Photosynthetica 2000, 38(3):343-348 | DOI: 10.1023/A:1010957117237

The Salinity Tolerance of Freshwater Cyanobacterium Synechococcus sp. PCC 7942 is Determined by Its Ability for Osmotic Adjustment and Presence of Osmolyte Sucrose

N.P. Ladas1, G.C. Papageorgiou2
1 Institute of Biology, National Research Center Demokritos, Athens, Greece
2 Institute of Biology, National Research Center Demokritos, Athens, Greece

We investigated the factors that impose an upper limit of salinity tolerance to the unicellular freshwater cyanobacterium Synechococcus sp. PCC 7942. Above approx. 0.4 M NaCl, Synechococcus cells cease to proliferate, after having accumulated 0.3 M sucrose. Cells that pre-accumulated sucrose could tolerate up to 0.5 M NaCl, but not 0.6 M NaCl. After exposure to 0.5 M NaCl or higher, the cells were irreversibly modified becoming unable for osmotic volume adjustments.

Additional key words: absorption spectra; cell doubling; chlorophyll content and fluorescence; cytoplasmic osmolality; glucose; NaCl; saccharose; sugars

Prepublished online: April 1, 2000; Published: October 1, 2000  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Ladas, N.P., & Papageorgiou, G.C. (2000). The Salinity Tolerance of Freshwater Cyanobacterium Synechococcus sp. PCC 7942 is Determined by Its Ability for Osmotic Adjustment and Presence of Osmolyte Sucrose. Photosynthetica38(3), 343-348. doi: 10.1023/A:1010957117237
Download citation

References

  1. Allakhverdiev, S.I., Sakamoto, A., Nishiyama, Y., Inaba, M., Murata, N.: NaCl-induced inactivation of photosystem I and II in Synechococcus: Osmotic effects and ionic effects.-Plant Physiol. 122: 1-8, 2000. Go to original source...
  2. Avigad, G.M.: Disaccharides.-In: Dey, P.M. (ed.): Methods in Plant Biochemistry. Carbohydrates. Vol. 2. Pp. 111-188. Academic Press, London 1990. Go to original source...
  3. Bohnert, H.J., Nelson, D.E., Jensen, R.G.: Adaptations to environmental stresses.-Plant Cell 7: 1099-1111, 1995. Go to original source...
  4. Bray, E.A.: Molecular responses to water deficit.-Plant Physiol. 103: 1035-1040, 1993. Go to original source...
  5. Blumwald, E., Melhorn, R.J., Packer, L.: Ionic osmoregulation during salt adaptation of the cyanobacterium Synechococcus 6311.-Plant Physiol. 73: 377-380, 1983a. Go to original source...
  6. Blumwald, E., Melhorn, R.J., Packer, L.: Studies of osmoregulation in salt adaptation of cyanobacteria with ESR spinprobe techniques.-Proc. nat. Acad. Sci. USA 80: 2599-2602, 1983b. Go to original source...
  7. Blumwald, E., Wolosin, J.M., Packer, L.: Na+/H+ exchange in the cyanobacterium Synechococcus 6311.-Biochem. biophys. Res. Commun. 122: 452-459, 1984. Go to original source...
  8. Csonka, L.N., Hanson, A.D.: Prokaryotic osmoregulation: Genetics and physiology.-Annu. Rev. Microbiol. 45: 569-606, 1991. Go to original source...
  9. Deshnium, P., Los, D.A., Hayashi, H., Mustardy, L., Murata, N.: Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress.-Plant mol. Biol. 29: 897-909, 1995. Go to original source...
  10. Dewar, M.A., Barber, J.: Cation regulation in Anacystis nidulans.-Planta 113: 143-155, 1973. Go to original source...
  11. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances.-Anal. Chem. 28: 350-356, 1956. Go to original source...
  12. Erdmann, N.: Organic osmoregulatory solutes in blue-green algae.-Z. Pflanzenphysiol. 110: 147-155, 1983. Go to original source...
  13. Jakim, D., Kavecansky, J., Scarlata, S.: Are membrane enzymes regulated by the viscosity of the membrane environment?-Biochemistry 31: 11589-11594, 1992. Go to original source...
  14. Mackay, M.A., Norton, R.S., Borowitzka, L.J.: Organic osmoregulatory solutes in cyanobacteria.-J. gen. Microbiol. 130: 2177-2191, 1984. Go to original source...
  15. Mehlhorn, R.J., Sullivan, R.: Measurement of bioenergetic phenomena in cyanobacteria with magnetic resonance techniques.-In: Abelson, J.N., Simon, M.I.: Methods in Enzymology. Vol. 167. Pp. 509-518. Academic Press, San Diego-New York-Berkeley-Boston-London-Sydney-Tokyo-Toronto 1988. Go to original source...
  16. Moran, R.: Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide.-Plant Physiol. 69: 1376-1381, 1982. Go to original source...
  17. Nitschmann, W.H., Packer, L.: NMR studies on Na+ transport in Synechococcus PCC 6311.-Arch. Biochem. Biophys. 294: 347-352, 1992. Go to original source...
  18. Nomura, M., Ishitani, M., Takabe, T., Rai, A.K., Takabe, T.: Synechococcus sp. PCC7942 transformed with Escherichia coli genes produces glycine betaine from choline and acquires resistance to salt stress.-Plant Physiol. 107: 703-708, 1995. Go to original source...
  19. Papageorgiou, G.C.: The photosynthesis of cyanobacteria (blue bacteria) from the perspective of signal analysis of chlorophyll a fluorescence.-J. sci. ind. Res. 55: 596-607, 1996.
  20. Papageorgiou, G.C., Alygizaki-Zorba, A., Ladas, N., Murata, N.: A method to probe the cytoplasmic osmolality and water and solute fluxes across the cell membrane of cyanobacteria with chlorophyll a fluorescence: Experiments with Synechococcus sp. PCC7942.-Physiol. Plant. 102: 215-224, 1998. Go to original source...
  21. Paschinger, H.: DCCD-induced sodium uptake by Anacystis nidulans.-Arch. Microbiol. 113: 283-29, 1977. Go to original source...
  22. Potts, M.: Dessication tolerance of prokaryots.-Microbiol. Rev. 58: 755-805, 1994. Go to original source...
  23. Reed, R.H., Borowitzka, L.J., Mackay, M.A., Chudek, J.A., Foster, R., Warr, S.R.C., Moore, D.J., Stewart, W.D.P.: Organic solute accumulation in osmotically stressed cyanobacteria.-FEMS Microbiol. Rev. 39: 51-56, 1986a. Go to original source...
  24. Reed, R.H., Richardson, D.L., Stewart, W.D.P.: Osmotic responses of unicellular blue-green algae (cyanobacteria): changes in cell volume and intracellular solute levels in response to hyperosmotic treatment.-Plant Cell Environ. 9: 25-31, 1986b. Go to original source...
  25. Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., Stanier, R.T.: Generic assignments, strain histories and properties of pure cultures of cyanobacteria.-J. gen. Microbiol. 111: 1-61, 1979. Go to original source...
  26. Ritchie, R.J.: Sodium transport and the origin of membrane potential in the cyanobacterium Synechococcus R-2 (Anacystis nidulans) PCC 7942.-J. Plant Physiol. 139: 320-330, 1992. Go to original source...
  27. Stamatakis, K., Ladas, N.P., Alygizaki-Zorba, A., Papageorgiou, G.C.: Sodium chloride-induced volume changes of freshwater cyanobacterium Synechococcus sp PCC 7942 cells can be probed by chlorophyll a fluorescence.-Arch. Biochem. Biophys. 370: 240-249, 1999. Go to original source...
  28. Whatmore, A.M., Reed, R.H.: Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation.-J. gen. Microbiol. 136: 2521-2526, 1990. Go to original source...
  29. Wolf, A.V., Brown, M.G., Prentiss, P.G.: Concentrative properties of aqueous solutions: Conversion tables.-In: Weast, R.C., Astle, M.J., Beyer, W.H. (ed.): CRC Book of Chemistry and Physics. 64th Ed. Pp. D223-D275. CRC Press, Boca Raton 1984.
  30. Wood, J.M.: Osmosensing by bacteria: Signals and membrane-based sensors.-Macrobiol. mol. Biol. Rev. 63: 230-262, 1999. Go to original source...