Photosynthetica 2002, 40(2):259-267 | DOI: 10.1023/A:1021306010135

Photosynthetic Assimilation of Sun versus Shade Norway Spruce [Picea abies (L.) Karst] Needles Under the Long-Term Impact of Elevated CO2 Concentration

M.V. Marek1, O. Urban1, M. Šprtová1, R. Pokorný1, Z. Rosová1, J. Kulhavý2
1 Laboratory of Ecological Physiology of Forest Trees, Institute of Landscape Ecology of the Academy of Sciences, Poříčí 3b, Brno, Czech Republic
2 Institute of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel Agricultural and Forestry University, Zemědělská 3, Brno, Czech Republic

The long-term impact of elevated concentration of CO2 on assimilation activity of sun-exposed (E) versus shaded (S) foliage was investigated in a Norway spruce stand [Picea abies (L.) Karst, age 14 years] after three years of cultivation in two domes with adjustable windows (DAW). One DAW was supplied with ambient air [AC, ca. 350 µmol(CO2) mol-1) and the second with elevated CO2 concentration [EC = AC plus 350 µmol(CO2) mol-1]. The pronounced vertical profile of the photosynthetic photon flux density (PPFD) led to the typical differentiation of the photosynthetic apparatus between the shaded and sun needles. Namely, photon-saturated values of maximal net photosynthetic rate (PNmax) and apparent quantum yield (α) were significantly higher/lower for E-needles as compared with the S-ones. The prolonged exposure to EC was responsible for the apparent assimilatory activity stimulation observed mainly in deeply shaded needles. The degree of this stimulation decreases in the order: S-needles dense part > S-needles sparse part > E-needles dense part > E-needles sparse part. In exposed needles some signals on a manifestation of the acclimation depression of the photosynthetic activity were found. The long-term effect of EC was responsible for the decrease of nitrogen content of needles and for its smoother gradient between E- and S-needles. The obtained results indicate that the E- and S-foliage respond differently to the long-term impact of EC.

Additional key words: carboxylation efficiency and rate; CO2 compensation concentration; dark respiration; dense, sparse parts; electron transport rate; quantum yield of assimilation; stand density; sun, shade

Published: June 1, 2002  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Marek, M.V., Urban, O., Šprtová, M., Pokorný, R., Rosová, Z., & Kulhavý, J. (2002). Photosynthetic Assimilation of Sun versus Shade Norway Spruce [Picea abies (L.) Karst] Needles Under the Long-Term Impact of Elevated CO2 Concentration. Photosynthetica40(2), 259-267. doi: 10.1023/A:1021306010135
Download citation

References

  1. Bazzaz, F.A., Miao, S.L.: Successional status, seed size, and responses of tree seedlings to CO2, light, and nutrients.-Ecology 74: 104-112, 1993. Go to original source...
  2. Besford, R.T., Mousseau, M., Matteucci, G.: Biochemistry, physiology and biophysics of photosynthesis.-In: Jarvis, P.G. (ed.): European Forest and Global Change: The Likely Impacts of Rising CO2 and Temperature. Pp. 29-78. Cambridge University Press, Cambridge 1998.
  3. Björkman, O.: Responses to different quantum flux densities.-In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (ed.): Physiological Plant Ecology I. Pp. 57-107. Springer-Verlag, Berlin-Heidelberg-New York 1981. Go to original source...
  4. Bowes, G.: Facing the inevitable: plants and increasing atmospheric CO2.-Annu. Rev. Plant Physiol. Plant mol. Biol. 44: 309-332, 1993. Go to original source...
  5. Bryant, J., Taylor, G., Frehner, M.: Photosynthetic acclimation to elevated CO2 is modified by source:sink balance in three component species of chalk grassland swards grown in a free air carbon dioxide enrichment (FACE) experiment.-Plant Cell Environ. 21: 159-168, 1998. Go to original source...
  6. Givnish, T.J.: Adaptation to sun and shade: a whole-plant perspective.-Aust. J. Plant Physiol. 15: 63-92, 1988. Go to original source...
  7. Grimmer, C., Komor, E.: Assimilate export by leaves of Ricinus communis L. growing under normal and elevated carbon dioxide concentrations: the same rate during the day, a different rate at night.-Planta 209: 275-281, 1999. Go to original source...
  8. Huttl, R.F.: Die Blattanalyse als Monitoring-Instrument in Waldökosystem.-UIFRO Workshop on Monitoring Air Pollution Impact on Permanent Plots, Data Processing and Result Interpretation. Pp. 139-147. Prachatice 1991.
  9. Innes, J.L.: Forest health, its assessment and status.-CAB International, Wallingford 1993.
  10. Kalina, J., Čajánek, M., Kurasová, I., Špunda, V., Vrána, J., Marek, M.V.: Acclimation of photosystem 2 function of Norway spruce induced during first season under elevated CO2 in lamellar domes.-Photosynthetica 38: 621-627, 2000. Go to original source...
  11. Kramer, P.J.: Carbon-dioxide concentration, photosynthesis, and dry matter production.-BioScience 31: 29-33, 1981. Go to original source...
  12. Lawlor, D.W., Mitchell, R.A.C.: The effects of increasing CO2 on crop photosynthesis and productivity - a review of field studies.-Plant Cell Environ. 14: 807-818, 1991. Go to original source...
  13. Leverenz, J.W.: Shade-shoot structure, photosynthetic performance in the field, and photosynthetic capacity of evergreen conifers.-Tree Physiol. 16: 109-114, 1996. Go to original source...
  14. Lewandowska, M., Hart, J.W., Jarvis, P.G.: Photosynthetic electron transport in shoots of Sitka spruce from different levels in a forest canopy.-Physiol. Plant. 41: 124-128, 1977. Go to original source...
  15. Long, S.P., Drake, B.G.: Effect of the long-term elevation of CO2 concentration in the field on the quantum yeld of photosynthesis of the C3 sedge, Scirpus olneyi.-Plant Physiol. 96: 221-226, 1991. Go to original source...
  16. Long, S.P., Drake, B.G.: Photosynthetic CO2 assimilation and rising atmospheric CO2 concentrations.-In: Baker, N.R., Thomas, H. (ed.): Crop Photosynthesis: Spatial and Temporal Determinants. Pp. 69-103. Elsevier Science Publ., Amsterdam 1992. Go to original source...
  17. Long, S.P., Hallgren, J.-E.: Measurements of CO2 assimilation by plants in the field and the laboratory.-In: Hall, D.O., Scurlock, J.M.O., Bolhàr-Nordenkampf, H.R., Leegood, R.C., Long, S.P. (ed.): Photosynthesis and Production in a Changing Environment. A Field and Laboratory Manual. Pp. 129-167. Chapman & Hall, London-Glasgow-New York-Tokyo-Melbourne-Madras 1993. Go to original source...
  18. Marek, M.V., Kalina, J., Matoušková, M.: Response of photosynthetic carbon assimilation of Norway spruce exposed to long-term elevation of CO2 concentration.-Photosynthetica 31: 209-220, 1995.
  19. Marek, M.V., Pokorný, R., Šprtová, M.: An evaluation of the physiological and growth activity of Norway spruce saplings after planting.-J. Forest Sci. 46: 91-96, 2000.
  20. Marek, M.V., Šprtová, M., Urban, O., Špunda, V.: Chlorophyll a fluorescence response of Norway spruce needles to the long-term effect of elevated CO2 in relation to their position within the canopy.-Photosynthetica 39: 437-445, 2001. Go to original source...
  21. Marek, M.V., Šprtová, M., Urban, O., Špunda, V., Kalina, J.: Response of sun versus shade foliage photosynthesis to radiation in Norway spruce.-Phyton 39: 131-137, 1999.
  22. Norby, R.J., Wullschleger, S.D., Gunderson, C.A., Johnson, D.W., Ceulemans, R.: Tree responses to rising CO2 in field experiments: implications for the future forest.-Plant Cell Environ. 22: 683-714, 1999. Go to original source...
  23. Osborne, C.P., Drake, B.G., LaRoche, J., Long, S.P.: Does long-term elevation of CO2 concentration increase photosynthesis in forest floor vegetation? Indiana strawberry in a Maryland forest.-Plant Physiol. 114: 337-344, 1997. Go to original source...
  24. Schreiber, U., Bilger, W.: Rapid assessment of stress effect on plant leaves by chlorophyll fluorescence measurement.-In: Tenhunen, J.D., Catarino, F.M., Lange, O.L., Oechel, W.C. (ed.): Plant Responses to Stress. Pp. 27-53. Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo 1987. Go to original source...
  25. Špunda, V., Čajánek, M., Kalina, J., Lachetová, I., Šprtová, M., Marek, M.V.: Mechanistic differences in utilisation of absorbed excitation energy within photosynthetic apparatus of Norway spruce induced by the vertical distribution of photosynthetically active radiation through the tree crown.-Plant Sci. 133: 155-165, 1998a. Go to original source...
  26. Špunda, V., Kalina, J., Čajánek, M., Pavlíčková, H., Marek, M.V.: Long-term exposure of Norway spruce to elevated CO2 concentration induces changes in photosystem II mimicking an adaptation to increased irradiance.-J. Plant Physiol. 152: 413-419, 1998b. Go to original source...
  27. Stitt, M.: Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells.-Plant Cell Environ. 14: 741-762, 1991. Go to original source...
  28. Stitt, M., Quick, W.P.: Photosynthetic carbon partitioning: its regulation and possibilities for manipulation.-Physiol. Plant. 77: 633-641, 1989. Go to original source...
  29. Urban, O., Janouš, D., Pokorný, R., Marková, I., Pavelka, M., Fojtík, Z., Šprtová, M., Kalina, J., Marek, M.V.: Glass domes with adjustable windows: A novel technique for exposing juvenile forest stands to elevated CO2 concentration.-Photosynthetica 39: 395-401, 2001. Go to original source...
  30. Urban, O., Marek, M.V.: Seasonal changes of selected parameters of CO2 fixation biochemistry of Norway spruce under the long-term impact of elevated CO2.-Photosynthetica 36: 533-545, 1999. Go to original source...
  31. Walters, M.B., Reich, P.B.: Are shade tolerance, survival, and growth linked? Low light and nitrogen effects on hardwood seedlings.-Ecology 77: 841-853, 1996. Go to original source...
  32. Woodman, J.N.: Variation of net photosynthesis within the crown of a large forest grown conifer.-Photosynthetica 5: 50-54, 1971.
  33. Zhang, H.H., Sharifi, M.R., Nobel, P.S.: Photosynthetic characteristics of sun versus shade plants of Encelia farinosa as affected by photosynthetic photon flux density, intercellular CO2 concentration, leaf water potential, and leaf temperature.-Aust. J. Plant Physiol. 22: 833-841, 1995. Go to original source...