Photosynthetica 2002, 40(4):587-595 | DOI: 10.1023/A:1024312304995

Thermotolerance of Photosystem 2 of Three Alpine Plant Species Under Field Conditions

V. Braun1, O. Buchner1, G. Neuner1
1 Institute of Botany, University of Innsbruck, Innsbruck, Austria

The species specific response of photosystem 2 (PS2) efficiency and its thermotolerance to diurnal and seasonal alterations in leaf temperature, irradiance, and water relations were investigated under alpine field conditions (1 950 m) and in response to an in situ long-term heat treatment (+3 K). Three plant species were compared using the naturally occurring microstratification of alpine environments, i.e. under contrasting leaf temperatures but under similar macroclimatic conditions. Thermotolerance of PS2 showed a high variability in all three species of up to 9.6 K. Diumal changes (increases or even decreases) in PS2 thermotolerance occurred frequently with a maximum increase of +4.8 K in Loiseleuria procumbens. Increasing leaf temperatures and photosynthetic photon flux density influenced thermotolerance adjustments. Under long-term heating (+3 K) of L. procumbens canopies with infra-red lamps, the maxima of the critical (Tc) and the lethal (Tp) temperature of PS2 increased by at least 1 K. Thermotolerance of the leaf tissue (LT50) increased significantly by +0.6 K. The effects of slight water stress on thermotolerance of PS2 were species specific. High temperature thresholds for photoinhibition were significantly different between species and increased by 9 K from the species in the coldest microhabitat to the species in the warmest. Experimental heating of L. procumbens canopies by +3 K caused a significant (p>0.01) upward shift of the high temperature threshold for photoinhibition by +3 K. Each species appeared to be very well adapted to the thermal conditions of its microhabitat as under the most frequently experienced daytime leaf temperatures no photoinhibition occurred. The observed fine scale thermal adjustment of PS2 in response to increased leaf temperatures shows the potential to optimise photosynthesis under varying environmental conditions as long as the upper thermal limits are not exceeded.

Additional key words: heat stress; high temperature; Loiseleuria procumbens; photoinhibition; Rhododendron ferrugineum; Soldanella pusilla; thermostability

Published: December 1, 2002  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Braun, V., Buchner, O., & Neuner, G. (2002). Thermotolerance of Photosystem 2 of Three Alpine Plant Species Under Field Conditions. Photosynthetica40(4), 587-595. doi: 10.1023/A:1024312304995
Download citation

References

  1. Alexandrov, V.Y.: Cells, Molecules and Temperature. Conformational Flexibility of Macromolecules and Ecological Adaptation.-Springer, Berlin-Heidelberg-New York 1977.
  2. Alfonso, M., Yruela, I., Almarcegui, S., Torrado, E., Perez, M.A., Picorel, R.: Unusual tolerance to high temperatures in a new herbicide-resistant D1 mutant from Glycine max (L.) Merr. cell cultures deficient in fatty acid desaturation.-Planta 212: 573-582, 2001. Go to original source...
  3. Berry, J., Björkman, O.: Photosynthetic response and adaptation to temperature in higher plants.-Annu. Rev. Plant Physiol. 31: 491-543, 1980. Go to original source...
  4. Bilger, H.-W., Schreiber, U., Lange, O.L.: Determination of leaf heat resistance: comparative investigation of chlorophyll fluorescence changes and tissue necrosis methods.-Oecologia 63: 256-262, 1984. Go to original source...
  5. Buchner, O., Neuner, G.: Determination of heat tolerance: A new equipment for field measurements.-J. appl. Bot. 75: 130-137, 2001.
  6. Cernusca, A.: Bestandesstruktur, Bioklima und Energiehaushalt von alpinen Zwergstrauchbeständen.-Oecol. Plant. 11: 71-102, 1976.
  7. Demmig-Adams, B., Adams, W.W., III: Photoprotection and other responses of plants to high light stress.-Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 599-626, 1992. Go to original source...
  8. Epron, D.: Effects of drought on photosynthesis and on the thermotolerance of photosystem II in seedlings of cedar (Cedrus atlantica and C. libani).-J. exp. Bot. 48: 1835-1841, 1997. Go to original source...
  9. Gamon, J.A., Pearcy, R.W.: Photoinhibition in Vitis californica. The role of temperature during high-light treatment.-Plant Physiol. 92: 487-494, 1990. Go to original source...
  10. Gates, G.M.: Climate Change and its Biological Consequences.-Sinauer, Sunderland 1993.
  11. Gauslaa, Y.: Heat resistance and energy budget in different Scandinavian plants.-Holarct. Ecol. 7: 1-78, 1984. Go to original source...
  12. Grabhherr, G.: Der CO2-Gaswechsel des immergrünen Zwergstrauches Loiseleuria procumbens (L.) Desv. in Abhängigkeit von Strahlung, Temperatur, Wasserstreß und phänologischem Zustand.-Photosynthetica 11: 302-310, 1977.
  13. Härndahl, U., Sundby, C.: Does the chloroplast small heat shock protein protect photosystem II during heat stress in vitro?-Physiol. Plant. 111: 273-275, 2001. Go to original source...
  14. Havaux, M.: Stress tolerance of photosystem II in vivo. Antagonistic effects of water, heat, and photoinhibition stresses.-Plant Physiol. 100: 424-432, 1992. Go to original source...
  15. Havaux, M.: Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures.-Plant Cell Environ. 16: 461-467, 1993. Go to original source...
  16. Havaux, M.: Carotenoids as membrane stabilizers in chloroplasts.-Trends Plant Sci. 3: 147-151, 1998. Go to original source...
  17. Havaux, M., Tardy, F.: Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophyll-cycle pigments.-Planta 198: 324-333, 1996. Go to original source...
  18. Heckathorn, S.A., Downs, C.A., Sharkey, T.D., Coleman, J.S.: The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress.-Plant Physiol. 116: 439-444, 1998. Go to original source...
  19. Kikuta, S.B., Richter, H.: Leaf discs or press sap? A comparison of techniques for the termination of osmotic potentials in freeze-thawed leaf material.-J. exp. Bot. 43: 1039-1044, 1992. Go to original source...
  20. Königer, M., Harris, G.C., Pearcy, R.W.: Interaction between photon flux density and elevated temperatures on photoinhibition in Alocasia macrorrhiza.-Planta 205: 214-222, 1998. Go to original source...
  21. Körner, C.: Alpine Plant Life. Functional Plant Ecology of High Mountain Ecosystems.-Springer, Berlin 1999.
  22. Körner, C., Larcher, W.: Plant life in cold climates.-In: Long, S.P., Woodward, F.I. (ed.): Plants and Temperature. Pp. 25-57. The Company of Biologists, Cambridge 1988.
  23. Ladjal, M., Epron, D., Ducrey, M.: Effects of drought preconditioning on thermotolerance of photosystem II and susceptibility of photosynthesis to heat stress in cedar seedlings.-Tree Physiol. 20: 1235-1241, 2000. Go to original source...
  24. Larcher, W.: Ergebnisse des IBP-Projekts "Zwergstrauchheide Patscherkofel".-Sitzungsber. österr. Akad. Wiss., math.-naturwiss. Kl., Abt. I 186: 301-371, 1977. Go to original source...
  25. Larcher, W.: Photosynthesis as a tool for indicating temperature stress events.-In: Schulze, E.-D., Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 261-277. Springer-Verlag, Berlin 1994. Go to original source...
  26. Larcher, W., Wagner, J.: Temperaturgrenzen der CO2-Aufnahme und Temperaturresistenz der Blätter von Gebirgspflanzen im vegetationsaktiven Zustand.-Oecol. Plant. 11: 361-374, 1976.
  27. Larcher, W., Wagner, J., Thammathaworn, A.: Effects of superimposed temperature stress on in vivo chlorophyll fluorescence of Vigna unguiculata under saline stress.-J. Plant Physiol. 136: 92-102, 1990. Go to original source...
  28. Long, S.P., Humphries, S., Falkowski, P.G.: Photoinhibition of photosynthesis in nature.-Annu. Rev. Plant Physiol. Plant mol. Biol. 45: 633-662, 1994. Go to original source...
  29. Lu, C., Zhang, J.: Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants.-J. exp. Bot. 50: 1199-1206, 1999. Go to original source...
  30. Manabe, S.: Study of global warming by GFDL climate models.-Ambio 27: 182-186, 1998.
  31. Murakami, Y., Tsuyama, M., Kobayashi, Y., Kodama, H., Iba, K.: Trienoic fatty acids and plant tolerance of high temperature.-Science 287: 476-479, 2000. Go to original source...
  32. Neuner, G., Braun, V., Buchner, O., Taschler, D.: Leaf rosette closure in the alpine rock species Saxifraga paniculata Mill.: significance for survival of drought and heat under high irradiation.-Plant Cell Environ. 22: 1539-1548, 1999. Go to original source...
  33. Neuner, G., Buchner, O., Braun, V.: Short term changes in heat tolerance in the alpine cushion plant Silene acaulis ssp. excapa [All.] J. Braun at different altitudes.-Plant Biol. 2: 677-683, 2000. Go to original source...
  34. Nijs, I., Kockelberg, F., Teughels, H., Blum, H., Hendrey, G., Impens, I.: Free air temperatures increase (FATI): a new tool to study global warming effects on plants in the field.-Plant Cell Environ. 19: 495-502, 1996. Go to original source...
  35. Preczewski, P.J., Heckathorn, S.A., Downs, C.A., Coleman, J.S.: Photosynthetic thermotolerance is quantitatively and positively correlated with production of specific heat-shock proteins among nine genotypes of Lycopersicon (tomato).-Photosynthetica 38: 127-134, 2000. Go to original source...
  36. Santarius, K.A.: The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost, desiccation and heat resistance.-Planta 113: 105-114, 1973. Go to original source...
  37. Schreiber, U., Berry, J.A.: Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus.-Planta 136: 233-238, 1977. Go to original source...
  38. Seemann, J.R., Downton, W.J.S., Berry, J.A.: Temperature and leaf osmotic potential as factors in the acclimation of photosynthesis to high temperature in desert plants.-Plant Physiol. 80: 926-930, 1986. Go to original source...
  39. Sharkey, T.D., Singaas, E.L.: Why plants emit isoprene.-Nature 374: 769, 1995. Go to original source...
  40. Shaw, M.R., Loik, M.E, Harte, J.: Gas exchange and water relations of two Rocky Mountain shrub species exposed to a climate change manipulation.-Plant Ecol. 146: 197-206, 2000. Go to original source...
  41. Siegwolf, R., Cernusca, A.: CO2-Gaswechsel von Rhododendron ferrugineum an der alpinen Waldgrenze.-Verhandl. Ges. Ökol. 12: 111-121, 1984.
  42. Taub, D.R., Seemann, J.R., Coleman, J.S.: Growth in elevated CO2 protects photosynthesis against high-temperature damage.-Plant Cell Environ. 23: 649-656, 2000. Go to original source...
  43. Thomas, P.G., Dominy, P.J., Vigh, L., Mansourian, A.R., Quinn, P.J., Williams, W.P.: Increased thermal stability of pigment-protein complexes of pea thylakoids following catalytic hydrogenation of membrane lipids.-Biochim. biophys. Acta 849: 131-140, 1986. Go to original source...
  44. Valladares, F., Pearcy, R.W.: Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia.-Plant Cell Environ. 20: 25-36, 1997. Go to original source...
  45. Wagner, D.: Scenarios of extreme temperature events.-Climatic Change 33: 385-407, 1996. Go to original source...
  46. Weis, E.: The influence of metal cations and pH on the heat sensitivity of photosynthetic oxygen evolution and chlorophyll fluorescence in spinach chloroplasts.-Planta 154: 41-47, 1982. Go to original source...
  47. Weis, E., Berry, J.A.: Plants and high temperature stress.-In: Long, S.P., Woodward, F.I. (ed.): Plants and Temperature. Pp. 329-346. Company of Biologists, Cambridge 1988.