Photosynthetica 2002, 40(4):635-639 | DOI: 10.1023/A:1024328808629

The Effect of Phyllode Temperature on Gas Exchange and Chlorophyll Fluorescence of Acacia mangium

Hua Yu1, Bee-Lian Ong2
1 International Institute for Earth System Science (ESSI), Nanjing University, Nanjing, People's Republic of China
2 Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore

The optimum temperature for photosynthetic CO2 assimilation of A. mangium phyllodes was 30-32 °C. Photosystem 2 (PS 2) exhibited high tolerance to high temperature. Gas exchange and the function of PS2 of A. mangium were adapted to the temperature regime of the tropical environment and this might be the contributing factor to their fast growth under tropical conditions.

Additional key words: dark respiration rate; net photosynthetic rate; photochemical and non-photochemical quenching; photosystem 2 efficiency; stomatal conductance; transpiration rate

Published: December 1, 2002  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Yu, H., & Ong, B. (2002). The Effect of Phyllode Temperature on Gas Exchange and Chlorophyll Fluorescence of Acacia mangium. Photosynthetica40(4), 635-639. doi: 10.1023/A:1024328808629
Download citation

References

  1. Atkins, O.K., Schortemeyer, M., McFarlane, N., Evans, J.R.: Variation in the components of relative growth rate in ten Acacia species from contrasting environments.-Plant Cell Environ. 21: 1007-1017, 1998. Go to original source...
  2. Ball, M.C., Cowan, I.R., Farquhar, G.D.: Maintenance of leaf temperature and the optimisation of carbon gain in relation to water loss in a tropical mangrove forest.-Aust. J. Plant Physiol. 15: 263-276, 1988. Go to original source...
  3. Berryman, C.A., Eamus, D., Duff, G.A.: Stomatal responses to a range of variables in two tropical tree species grown with CO2 enrichment.-J. exp. Bot. 45: 539-546, 1994. Go to original source...
  4. Bilger, W., Björkman, O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis.-Photosynth. Res. 25: 173-185, 1990. Go to original source...
  5. Bongi, G., Long, S.P.: Light dependent damage to photosynthesis in olive leaves during chilling and high temperature stress.-Plant Cell Environ. 10: 241-249, 1987. Go to original source...
  6. Demmig-Adams, B., Adams, W.W., III: Photoprotection and other responses of plants to high light stress.-Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 599-626, 1992. Go to original source...
  7. Dreyer, E., Le Roux, X., Montpied, P., Daudet, F.A., Masson, F.: Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species.-Tree Physiol. 21: 223-232, 2001. Go to original source...
  8. Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87-92, 1989. Go to original source...
  9. Hall, A.E.: Crop Responses to Environment.-CRC Press, Boca Raton-London-New York-Washington 2001.
  10. Havaux, M., Strasser, R.J., Greppin, H.: A theoretical and exerimental analysis of the qP and qN coefficients of chloro-phyll fluorescence quenching and their relation to photo-chemical and non-photochemical events.-Photosynth. Res. 27: 41-55, 1991. Go to original source...
  11. Hew, C.S., Yong, J.W.H.: Growth and photosynthesis of Oncidium 'Goldiana'.-J. hort. Sci. 69: 809-819, 1994. Go to original source...
  12. Horton, P.: Are grana necessary for regulation of light harvesting?-Aust. J. Plant Physiol. 26: 659-669, 1999. Go to original source...
  13. Hurry, V., Huner, N., Selstam, E., Gardeström, P., Öquist, G.: Photosynthesis at low growth temperatures.-In: Raghavendra, A.S. (ed.): Photosynthesis. A Comprehensive Treatise. Pp. 238-249. Cambridge University Press, Cambridge 1998.
  14. Hurry, V.M., Huner, N.P.A.: Low growth temperature effects a differential inhibition of photosynthesis in spring and winter-wheat.-Plant Physiol. 96: 491-497, 1991. Go to original source...
  15. Hurry, V.M., Keerberg, O., Pärnik, T., Öquist, G., Gardeström, P.: Effect of cold hardening on the components of respiratory decarboxylation in the light and in the dark in leaves of winter rye.-Plant Physiol. 111: 713-719, 1996. Go to original source...
  16. Ishida, A., Nakano, T., Matsumoto, Y., Sakoda, M., Ang, L.H.: Diurnal changes in leaf gas exchange and chlorophyll fluorescence in tropical tree species with contrasting light requirements.-Ecol. Res. 14: 77-88, 1999. Go to original source...
  17. Ishida, A., Nakano, T., Sekikawa, S., Maruta, E., Masuzawa, T.: Diurnal changes in needle gas exchange in alpine Pinus pumila during snow-melting and summer seasons.-Ecol. Res. 16: 107-116, 2001. Go to original source...
  18. Königer, M., Harris, G.C., Pearcy, R.W.: Interaction between photon flux density and elevated temperatures on photoinhibition in Alocasia macrorrhiza.-Planta 205: 214-222, 1998. Go to original source...
  19. Koyama, H.: Photosynthetic rates in lowland rainforest trees of peninsular Malaysia.-Jap. J. Ecol. 31: 361-369, 1981.
  20. Lee, H.Y., Hong, Y.N., Chow, W.S.: Photoinactivation of photosystem II complexes and photoprotection by non-functional neighbours in Capsicum annuum L. leaves.-Planta 212: 332-342, 2001. Go to original source...
  21. Martin, B., Ort, D.R.: The recovery of photosynthesis in tomato subsequent to chilling exposure.-Photosynth. Res. 6: 121-132, 1985. Go to original source...
  22. Mathis, P., Rutherford, A.W.: The primary reactions of photosystems I and II of algae and higher plants.-In: Amesz, J. (ed.): Photosynthesis. Pp. 63-96. Elsevier Science Publishers, Amsterdam 1987. Go to original source...
  23. Mok, C.K., Cheah, L.C., Chan, Y.K.: Site management and productivity of Acacia mangium in humid tropical Sumatra, Indonesia.-In: Nambiar, E.K.S., Tiarks, A., Cossalter, C., Ranger, J. (ed.): Site Management and Productivity in Tropical Plantation Forests. Pp. 87-94. Center for International Forestry Research, Bogor 2000.
  24. Nie, G.Y., Long, S.P., Baker, N.R.: The effects of development at sub-optimal growth temperatures on photosynthetic capacity and susceptibility to chilling-dependent photoinhibition in Zea mays.-Physiol. Plant. 85: 554-560, 1992. Go to original source...
  25. Öquist, G., Martin, B.: Cold climates.-In: Baker, N.R., Long, S.P. (ed.): Photosynthesis in Contrasting Environments. Pp. 237-293. Elsevier Science Publishers, Amsterdam 1986.
  26. Öquist, G., Wass, R.: A portable, microprocessor operated instrument for measuring chlorophyll fluorescence kinetics in stress physiology.-Physiol. Plant. 73: 211-217, 1988. Go to original source...
  27. Pastenes, C., Horton, P.: Resistance of photosynthesis to high temperature in two bean varieties (Phaseolus vulgaris L.).-Photosynth. Res. 62: 197-203, 1999. Go to original source...
  28. Roden, J.S., Ball, M.C.: Growth and photosynthesis of two eucalypt species during high temperature stress under ambient and elevated [CO2].-Global Change Biol. 2: 115-128, 1996. Go to original source...
  29. Saradadevi, K., Raghavendra, A.S.: Dark respiration protects photosynthesis against photoinhibition in mesophyll protoplasts of pea (Pisum sativum).-Plant Physiol. 99: 1232-1237, 1992. Go to original source...
  30. Sim, B.L.: Research on Acacia mangium in Sabah: A review.-In: Turnbull, J.W. (ed.): Australian Acacias in Developing Countries. Pp. 164-166. Australian Center for International Agricultural Research, Canberra 1986.
  31. Taub, D.R., Seemann, J.R., Coleman, J.S.: Growth in elevated CO2 protects photosynthesis against high-temperature damage.-Plant Cell Environ. 23: 649-656, 2000. Go to original source...
  32. Van Kooten, O., Snel, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology.-Photosynth. Res. 26: 147-150, 1990. Go to original source...
  33. Yamane, Y., Kashino, Y., Koike, H., Satoh, K.: Effects of high temperatures on the photosynthetic systems in spinach: Oxygen-evolving activities, fluorescence characteristics and denaturation process.-Photosynth. Res. 57: 51-59, 1998. Go to original source...
  34. Yu, H.: Fast Growth of Acacia mangium, a Result of Efficient Light Utilization and Carbon Assimilation?-Ph.D. Dissertation. National University of Singapore 2002.
  35. Yu, H., Ong, B.L.: Photosynthesis and antioxidant enzymes of phyllodes of Acacia mangium.-Plant Sci. 159: 107-115, 2000. Go to original source...
  36. Yu, H., Ong, B.-L.: Responses of Acacia mangium seedlings to different irradiances.-Photosynthetica 39: 477-479, 2001. Go to original source...