Photosynthetica 2006, 44(2):255-261 | DOI: 10.1007/s11099-006-0016-7

Carotenoid composition and photochemical activity of four sandy grassland species

S. Veres1, V. R. Tóth1, R. Láposi1, V. Oláh1, G. Lakatos2, I. Mészáros1,*
1 Department of Botany, Faculty of Science, Debrecen University, Debrecen, Hungary
2 Department of Applied Ecology, Faculty of Science, Debrecen University, Debrecen, Hungary

The photosynthetic pigments and photochemical efficiency of photosystem 2 (PS2) were studied in four constitutive species (Achillea millefolium L., Festuca pseudovina Hack. ex Wiesb., Potentilla arenaria Borkh., and Thymus degenianus Lyka) of a semiarid grassland in South-eastern Hungary. Every species displayed typical sun-adapted traits and substantial plasticity in the composition and functioning of the photosynthetic apparatus. The contents of chlorophylls (Chls) and carotenoids (Cars) on a dry matter basis declined from May to July, however, the amount of total Cars on a Chl basis increased. This increase was the largest in Potentilla (48 %) and the smallest in Achillea (14 %). The pool of xanthophylls (VAZ) was between 25 % and 45 % of the total Car content and was larger in July than in May. The content of β-carotene increased by July, but lutein content did not change significantly. The Chl fluorescence ratio Fv/Fm was reduced by 3-10 % at noon, reflecting the down-regulation of PS2 in the period of high irradiance and high temperature. The occurrence of minimal values of ΔF/Fm' showed close correlation to the de-epoxidation rate of violaxanthin. Hence in natural habitats these species developed a considerable capacity to dissipate excess excitation energy in the summer period in their photosynthetic apparatus through the xanthophyll cycle pool and a related photoprotective mechanism, when the photochemical utilization of photon energy was down-regulated.

Additional key words: chlorophyll; dry mass; photochemical efficiency; photosystem 2; seasonal changes; species differences; xanthophyll cycle

Received: June 23, 2005; Accepted: December 20, 2005; Published: June 1, 2006  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Veres, S., Tóth, V.R., Láposi, R., Oláh, V., Lakatos, G., & Mészáros, I. (2006). Carotenoid composition and photochemical activity of four sandy grassland species. Photosynthetica44(2), 255-261. doi: 10.1007/s11099-006-0016-7
Download citation

References

  1. Adams, W.W., III, Demmig-Adams, B.: The xanthophyll cycle and sustained thermal energy dissipation activity in Vinca minor and Euonymus kiautschovicus in winter.-Plant Cell Environ. 18: 117-127, 1995. Go to original source...
  2. Ain-Lhout, F., Díaz Barradas, M.C., Zunzunegui, M., Rodríguez, H., García Novo, F., Vargas, M.A.: Seasonal differences in photochemical efficiency and chlorophyll and carotenoid contents in six Mediterranean shrub species under field conditions.-Photosynthetica 42: 399-407, 2004. Go to original source...
  3. Archer, S., Schimel, D.S., Holland, E.A.: Mechanism of shrubland expansion: Land use, climate or CO2?-Climate Changes 28: 91-98, 1995. Go to original source...
  4. Björkman, O., Demmig-Adams, B.: Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants.-In: Schulze, E.D., Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 17-47. Springer-Verlag, Berlin 1994. Go to original source...
  5. Bungard, R.A., Ruban, A.V., Hibberd, J.M., Press, M.C., Horton, P., Scholes, J.D.: Unusual carotenoid composition and a new type of xanthophyll cycle in plants.-Proc. nat. Acad. Sci. USA 96: 1135-1139, 1999. Go to original source...
  6. De Luca d'Oro, G.M., Trippi, V.S.: Effect of stress conditions induced by temperature, water and rain on senescence development.-Cell Physiol. 28: 1389-1396, 1987.
  7. Demmig-Adams, B, Adams, W.W., III: Photoprotection and other responses of plants to high light stress.-Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 599-626, 1992. Go to original source...
  8. Demmig-Adams, B., Adams, W.W., III: Chlorophyll and carotenoid composition in leaves of Eonymus kiautschovicus acclimated to different degrees of light stress in the field.-Aust. J. Plant Physiol. 23: 649-659, 1996. Go to original source...
  9. Eskling, M., Akerlund, H.-E.: Changes in the quantities of violaxanthin de-epoxidase, xanthophylls and ascorbate in spinach upon shift from low to high light.-Photosynth. Res. 57: 41-50, 1998. Go to original source...
  10. Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87-92, 1989. Go to original source...
  11. Gilmore, A.M., Ball, M.C.: Protection and storage of chlorophyll in overwintering evergreens.-Proc. nat. Acad. Sci. USA 97: 11 098-11 101, 2000. Go to original source...
  12. Goodwin, T.W., Britton, G.: Distribution and analysis of carotenoids.-In: Goodwin, T.W. (ed.): Plant Pigments. Pp. 61-132. Academic Press, London 1988.
  13. Gratani, L., Bombelli, A.: Leaf anatomy, inclination, and gas exchange relationships in evergreen sclerophyllous and drought semideciduous shrub species.-Photosynthetica 37: 573-585, 1999. Go to original source...
  14. Humbeck, K., Röer, S., Senger, H.: Evidence for an essential role of carotenoids in the assembly of an active photosystem II.-Planta 179: 242-250, 1989. Go to original source...
  15. Joshi, P.N., Biswal, B., Biswal, U.C.: Effect of UV-A on aging of wheat leaves and role of phytochrome.-Environ. exp. Bot. 31: 267-276, 1991. Go to original source...
  16. Kalapos, T.: Leaf water potential-leaf water deficit relationship for ten species of a semiarid grassland community.-Plant Soil 160: 105-112, 1994. Go to original source...
  17. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: the basics.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313-349, 1991. Go to original source...
  18. Logan, B.A., Barker, D.H., Demmig-Adams, B., Adams, W.W., III: Acclimation of leaf carotenoid composition and ascorbate levels to gradients in the light environment within an Australian rainforest.-Plant Cell Environ. 19: 1083-1090, 1996. Go to original source...
  19. Matsuhara, S., Gilmore, A.M., Osmond, B.C.: Diurnal and acclimatory responses of violaxanthin and lutein epoxide in Australian mistletoe Amyema miquelii.-Aust. J. Plant Physiol. 28: 793-800, 2001. Go to original source...
  20. Mészáros, I., Láposi, R., Veres, Sz., Bai, E., Lakatos, G., Gáspár, A., Mile, O.: Effects of supplemental UV-B and drought stress on photosynthetic activity of sessile oak (Quercus petraea L.).-PS2001 Proceedings of 12th International Congress on Photosynthesis. S3-036. CSIRO Publishing, Collingwood 2001.
  21. Mészáros, I., Veres, Sz., Tóth, R.V.: Relationship between the operation of violaxanthin cycle and the PSII quantum yield in sandy grassland species.-Plant Physiol. Biochem. (Special Issue) 327, 1996.
  22. Munné-Bosch, S., Alegre, L.: The xanthophyll cycle is induced by light irrespective of water status in field-grown lavender (Lavandula stoechas) plants.-Physiol. Plant. 108: 147-151, 2000a. Go to original source...
  23. Munné-Bosch, S., Alegre, L.: Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants.-Planta 210: 925-931, 2000b. Go to original source...
  24. Munné-Bosch, S., Alegre, L.: Die and let live: leaf senescence contributes to plant survival under drought stress.-Funct. Plant Biol. 31: 203-216, 2004. Go to original source...
  25. Murthy, S.D.S., Rajagopal, S.: UV-B radiation induced alterations in the bioenergetic processes of photosynthesis.-Photosynthetica 31: 481-487, 1995.
  26. Nagy, Z., Takács, Z., Szente, K., Csintalan, Zs., Lichtenthaler, H.K., Tuba, Z.: Limitation of net CO2 uptake in plant species of a temperate dry loess grassland.-Plant Physiol. Biochem. 36: 753-758, 1998. Go to original source...
  27. Nagy, Z., Tuba, Z., Szente, K., Uzvölgyi, J., Fekete, G.: Photosynthesis and water use efficiency during degradation of a semiarid loess steppe.-Photosynthetica 30: 307-311, 1994.
  28. Niyogi, K.K., Björkman, O., Grossman, A.R.: The roles of specific xanthophylls in photoprotection.-Proc. nat. Acad. Sci. USA 94: 14162-14167, 1997. Go to original source...
  29. Osmond, C.B.: What is photoinhibition? Some insights from comparisons of shade and sun plants.-In: Baker, N.R., Bowyer, J.R. (ed.): Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Pp. 1-24. Bios Scientific Publ., Oxford 1994.
  30. Park, Y.-I., Chow, W.S., Anderson, J.M.: The quantum yield of photoinactivation of photosystem II in pea leaves is greater at low than high photon exposure.-Plant Cell Physiol. 36: 1163-1167, 1995. Go to original source...
  31. Pjon, C.J.: Effects of cycloheximide and light on leaf senescence in maize and hydrangea.-Plant Cell Physiol. 22: 847-854, 1981.
  32. Pogson, B., McDonald, K.A., Truong, M., Britton, G., DellaPenna, D.: Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants.-Plant Cell 84: 1627-1639, 1996. Go to original source...
  33. Précsényi, I., Mészáros, I.: The responses of a Potentilla arenaria Borkh. subpopulation to some soil factors in sandy grassland.-Acta bot. hung. 40: 193-201, 1997.
  34. Sapozhnikov, D.I., Krasnovskaya, T.A., Maevskaya, A.N.: [Changes observed in the relation between the main carotenoids in the plastids of green leaves exposed to light.]-Dokl. Akad. Nauk SSSR 113: 465-467, 1957. [In R.]
  35. Schindler, C., Lichtenthaler, H.K.: Photosynthetic CO2-assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and a cloudy day.-J. Plant Physiol. 148: 399-412, 1996. Go to original source...
  36. Sieferman-Harms, D.: The light-harvesting and protective functions of carotenoids in photosynthetic membranes.-Physiol. Plant. 69: 561-568, 1987. Go to original source...
  37. Somersalo, A., Krause, G.H.: Photoinhibition at chilling temperature. Fluorescence characteristics of unhardened and cold acclimated spinach leaves.-Planta 177: 409-416, 1989. Go to original source...
  38. Tóth, R.V., Mészáros, I., Veres, Sz., Nagy, J.: Effects of the available nitrogen on the photosynthetic activity and xanthophyll cycle pool of maize in field.-J. Plant Physiol. 159: 627-634, 2002. Go to original source...
  39. Tuba, Z.: Rearrangement of photosynthetic pigment composition in C4, C3 and CAM species during drought and recovery.-J. Plant Phys. 115: 331-338, 1984 Go to original source...
  40. Tuba, Z., Szente, K., Nagy, Z., Csintalan, Zs., Koch, J.: Responses of CO2 assimilation, transpiration and water use efficiency to long-term elevated CO2 in perennial C3 xeric loess steppe species.-J. Plant Physiol. 148: 356-361, 1996. Go to original source...
  41. Valladares, F., Pearcy, R.W.: Interaction between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia.-Plant Cell Environ. 20: 25-36, 1997. Go to original source...
  42. Veres, Sz., Mészáros, I., Tóth, R.V., Mile, O., Ács, G.: Photosynthetic acclimation of some monocot and dicot species to abiotic stress factors in a semiarid grassland.-In: Ferienciková, D., Gáborčík, N., Ondráąek, L., Uhliarová, E., Zimková, M. (ed.): Grassland V. Proceedings of the 5th Ecological Conference. Pp. 254-264. Banská Bystrica 2000.
  43. Veres, Sz., Mészáros, I., Tóth, R.V., Mile, O., Lakatos, Gy.: Changes in the photochemical activity of some xerophyta species under field conditions.-Acta Biol. Debr. 23: 56-59, 2001.
  44. Yamamoto, H.Y., Nakayama, T.O.M., Chichester, C.O.: Studies of the light interconversions of the leaf xanthophylls.-Arch. Biochem. Biophys. 97: 168-173, 1962. Go to original source...
  45. Young, A.J.: The photoprotective role of carotenoids in higher plants.-Physiol. Plant. 83: 702-708, 1991. Go to original source...
  46. Wellburn, A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution.-Plant Physiol. 114: 307-313, 1994. Go to original source...