Photosynthetica 2009, 47(1):41-45 | DOI: 10.1007/s11099-009-0008-5

Gas exchange response of barley and pea cultivars to altitude variation in Himalaya

S. K. Vats1,*, N. Kumar2,3, S. Kumar2
1 Biodiversity Division, Institute of Himalayan Bioresource Technology (CSIR), Palampur, India
2 Biotechnology Division, Institute of Himalayan Bioresource Technology (CSIR), Palampur, India
3 Laboratory No. 422, Institute of Plant and Microbial Biology, Nankang, Taipei, Taiwan

Leaf stomatal density (SD), net photosynthetic rates (P N), and stomatal conductance (g s) of Hordeum vulgare and Pisum sativum cultivars in Himalaya increased with altitude. Higher P N and leaf temperature under low CO2 partial pressure at high altitudes could evoke a higher g s and SD to allow sufficient influx of CO2 as well as more efficient leaf cooling through transpiration.

Additional key words: acclimation; Hordeum; photosynthesis; Pisum; pore length; species differences; stomatal conductance; stomatal density; stomatal index

Received: February 20, 2008; Accepted: September 1, 2008; Published: March 1, 2009  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Vats, S.K., Kumar, N., & Kumar, S. (2009). Gas exchange response of barley and pea cultivars to altitude variation in Himalaya. Photosynthetica47(1), 41-45. doi: 10.1007/s11099-009-0008-5
Download citation

References

  1. Beerling, D.J., Woodward, F.I.: Ecophysiological responses of plants to global environmental change since the Last Glacial Maximum.-New Phytol. 125: 641-648, 1993. Go to original source...
  2. Bonnier, G.: Recherches expérimentales sur l'adapatation des plantes au climat alpin.-Ann. Sci. nat. Bot. 20: 217-360, 1895.
  3. Hetherington, A.M., Woodward, F.I.: The role of stomata in sensing and driving environmental change.-Nature 424: 901-908, 2003. Go to original source...
  4. Hovenden, M.J., Brodribb, T.: Altitude of origin influences stomatal conductance and therefore maximum assimilation rate in Southern Beech, Nothofagus cunninghamii.-Aust. J. Plant Physiol. 27: 451-456, 2000. Go to original source...
  5. Körner, C., Neumayer, M., Menendez-Riedl, S.P., Smeets-Scheel, A.: Functional morphology of mountain plants.-Flora 182: 353-383, 1989. Go to original source...
  6. Kumar, N., Kumar, S., Ahuja, P.S.: Photosynthetic characteristics of Hordeum, Triticum, Rumex, and Trifolium species at contrasting altitudes.-Photosynthetica 43: 195-201, 2005. Go to original source...
  7. Kumar, N., Kumar, S., Vats, S.K., Ahuja, P.S.: Effect of altitude on the primary products of photosynthesis and the associated enzymes in barley and wheat.-Photosynth. Res. 88: 63-71, 2006. Go to original source...
  8. Llambí, L.D., Fontaine, M., Rada, F., Saugier, B., Sarmiento, L.: Ecophysiology of dominant plant species during old-field succession in a high tropical Andean ecosystem.-Arct. antarct. alp. Res. 35: 447-453, 2003. Go to original source...
  9. Lu, Z.M., Percy, R.G., Qualset, C.O., Zeiger, E.: Stomatal conductance predicts yields in irrigated Pima cotton and bread wheat grown in high temperatures.-J. exp. Bot. 49: 453-460, 1998. Go to original source...
  10. Lu, Z.M., Zeiger, E.: Selection for higher yields and heatresistance in Pima cotton has caused genetically-determined changes in stomatal conductances.-Physiol. Plant. 92: 273-278, 1994. Go to original source...
  11. McElwain, J.C.: Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure.-Geology 32: 1017-1021, 2004. Go to original source...
  12. Morrison, J.I.L.: Stomatal response to increased CO2 concentration.-J. exp. Bot. 49: 443-452, 1998. Go to original source...
  13. Royer, D.L.: Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration.-Rev. Palaeobot. Palynol. 114: 1-28, 2001. Go to original source...
  14. Sage, R.F., Coleman, J.R.: Effects of low atmospheric CO2 on plants: more than a thing of the past.-Trends Plant Sci. 6: 18-24, 2001. Go to original source...
  15. Šantrůček, J., Sage, R.F.: Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album.-Aust. J. Plant Physiol. 23: 467-478, 1996. Go to original source...
  16. Schlüter, U., Muschak, M., Berger, D., Altmann, T.: Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1-1) under different light regimes.-J. exp. Bot. 54: 867-874, 2003. Go to original source...
  17. Sellers, P.J., Bounoua, L., Collatz, G.J., Randall, D.A., Dazlich, D.A., Los, S.O., Berry, J.A., Fung, I., Tucker, C.J., Field, C.B., Jensen, T.G.: Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate.-Science 271: 1402-1406, 1996. Go to original source...
  18. Ulman, P., Čatský, J., Pospíšilová, J.: Photosynthetic traits in wheat grown under decreased and increased CO2 concentration, and after transfer to natural CO2 concentration.-Biol. Plant. 43: 227-237, 2000. Go to original source...
  19. Vats, S.K., Kumar, S.: Photosynthetic response of Podophyllum hexandrum Royle from different altitude in Himalayan ranges.-Photosynthetica 44: 136-139, 2006. Go to original source...
  20. Viswanath, C.S.: Handbook of Agriculture.-Indian Council of Agricultural Research, New Delhi 2002.
  21. Woodward, F.I.: Ecophysiological studies on the shrub Vaccinium myrtillus L. taken from a wide altitudinal range.-Oecologia 70: 580-586, 1986. Go to original source...
  22. Woodward, F.I.: Stomatal numbers are sensitive to increase in CO2 from pre-industrial levels.-Nature 327: 617-618, 1987. Go to original source...
  23. Woodward, F.I., Bazzaz, F.A.: The response of stomatal density to CO2 partial-pressure.-J. exp. Bot. 39: 1771-1781, 1988. Go to original source...
  24. Woodward, F.I., Lake, J.A., Quick, W.P.: Stomatal development and CO2, ecological consequences. New Phytol. 153: 477-484, 2002. Go to original source...