Photosynthetica 2009, 47(3):372 | DOI: 10.1007/s11099-009-0058-8

Influence of low temperatures on the growth and photosynthetic activity of industrial chicory, Cichorium intybus L. partim

S. Devacht1,*, P. Lootens1, I. Roldán-Ruiz1, L. Carlier1, J. Baert1, J. Van Waes1, E. Van Bockstaele1,2
1 Institute for Agricultural and Fisheries Research (ILVO) - Plant, Merelbeke, Belgium
2 Faculty Bioscience Engineering - Plant Production, Ghent University, Gent, Belgium

The cold stress effect on early vigour and photosynthesis efficiency was evaluated for five industrial chicory varieties with contrasting early vigour. The relationships between the growth and physiological parameters were assessed. The varieties were examined at three growth temperatures: 16 (reference), 8 (intermediate) and 4 °C (stress). The effect was measured using physiological processes (growth, photosynthesis, chlorophyll a fluorescence), and pigment content. The analysis of the measured growth parameters (dry leaf and root mass, and leaf area) indicated that temperature had a significant effect on the varieties, but the overall reaction of the varieties was similar with lowering temperatures. The photosynthesis and chlorophyll a fluorescence measurements revealed significant changes for the photosynthesis (maximum net photosynthesis, quantum efficiency, light compensation point and dark respiration) and chlorophyll a fluorescence parameters (photochemical and non-photochemical quenching) with lowering temperatures for Hera and Eva, two extremes in youth growth. No significant differences could be found between the extremes for the different temperatures. The pigment content analysis revealed significant differences at 4 °C in contrast to 16 and 8 °C, especially for the xanthophyll/carotenoid pool, suggesting a protective role. Subsequently, the relationship between the physiological processes was evaluated using principal component analysis. At 4 °C, 2 principal components were detected with high discriminating power for the varieties and similar classification of the varieties as determined in the growth analysis. This provides a preview on the possible relationships between photosynthesis and growth for industrial chicory at low temperatures.

Additional key words: chilling; chlorophyll a fluorescence; cold stress; early vigour; photoinhibition; photosynthesis

Received: January 22, 2009; Accepted: June 5, 2009; Published: September 1, 2009  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Devacht, S., Lootens, P., Roldán-Ruiz, I., Carlier, L., Baert, J., Van Waes, J., & Van Bockstaele, E. (2009). Influence of low temperatures on the growth and photosynthetic activity of industrial chicory, Cichorium intybus L. partim. Photosynthetica47(3), 372. doi: 10.1007/s11099-009-0058-8
Download citation

References

  1. Alves, P.L.C.A., Magalhães, A.C.N., Barja, P.R.: The phenomenon of photoinhibition of photosynthesis and its importance in reforestation. - Bot. Rev. 68: 193-208, 2002. Go to original source...
  2. Baert, J.: The effect of sowing and harvest date and cultivar on inulin yield and composition of chicory roots - Ind. Crop Production 6: 195-199, 1997. Go to original source...
  3. Baker, N.R., Rosenqvist, E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. - J of Exp Bot 55: 1607-1621, 2004. Go to original source...
  4. Brüggeman, W., van der Kooij, T.A.W., van Hasselt, P.R.: Long-term chilling of young tomato plants under low light and subsequent recovery. II. Chlorophyll fluorescence, carbon metabolisn and activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. - Planta 186: 179-187, 1992. Go to original source...
  5. Close, D.C., Beadle, C.L.: The ecophysiology of foliar anthocyanin. - Bot. Rev 69: 149-161, 2003. Go to original source...
  6. Devacht, S., Lootens, P., Carlier, L., Baert, J., Van Waes, J., Van Bockstaele, E.: Effect of cold stress on early vigour, photosynthesis, chlorophyll a fluorescence and pigment content of industrial chicory. - Comm. Agr. Appl. Biol. Sci. 72: 165-169, 2007.
  7. Dogniaux, R., Lemoine, M., Sneyers, R.: Année-type moyenne pour le traitement de problèmes de capitation d'énergie solaire. - Royal Meteorological Institute of Belgium, Brussels 1978.
  8. Ensminger, I., Busch, F., Huner, N.P.A.: Photostasis and cold acclimation: sensing low temperature through photosynthesis. - Physiol. Plant. 126: 28-44, 2006. Go to original source...
  9. Fracheboud, Y., Haldimann, P., Leipner, J., Stamp, P.: Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). - J. Exp. Bot. 50: 1533-1540, 1999. Go to original source...
  10. Fracheboud, Y., Ianelli, M.A., Pietrini, F., Massaci, A.: Photoprotection in maize at suboptimal temperatures. - Proc COST Action 814: 115-120, 2000.
  11. Fracheboud, Y., Leipner, J.: The application of chlorophyll fluorescence to study light, temperature and drought stress. - In: DeEll, J.R., Toivonen, P.M.A. (ed.): Practical Applications of Chlorophyll Fluorescence in Plant Biology. Pp. 125-150. Kluwer Acad. Publishers, Norwell 2003. Go to original source...
  12. Gitelson, A.A., Merzlyak, M.N., Chivkunova, O.B.: Optical properties and non-destructive estimation of anthocyanin content in plant leaves. - Photochem. Photobiol. 74: 38-45, 2001. Go to original source...
  13. Gonzalez, J.A., Liberman-Cruz, M., Boero, C., Gallardo, M., Prado, F.E.: Leaf thickness, protective and photosynthetic pigments and carbohydrate content in leaves of the world's highest elevation tree Polylepis tarapacana (Rosaceae). - Phyton: 41-53, 2002.
  14. Haldimann, P.: Chilling-induced changes to carotenoid composition, photosynthesis and the maximum quantum yield of photosystem II photochemistry in two maize genotypes differing in tolerance to low temperature. - J. Plant Physiol. 151: 610-619, 1997. Go to original source...
  15. Haldimann, P.: Low growth temperature-induced changes to pigment composition and photosynthesis in Zea mays genotypes differing in chilling sensitivity. - Plant Cell Environ. 21: 200-208, 1998. Go to original source...
  16. Haldimann, P.: How do changes in temperature during growth affect leaf pigment composition and photosynthesis in Zea mays genotypes differing in sensitivity to low temperature? - J. Exp. Bot. 50: 543-550, 1999. Go to original source...
  17. Holton, T.A., Cornish, E.C.: Genetics and biochemistry of anthocyanin biosynthesis. - The Plant Cell 7: 1071-1083, 1995. Go to original source...
  18. Hunt, R.: Concepts in plant growth analysis. - In: Hunt, R. (ed.): Plant Growth Curves: The Functional Approach to Plant Growth Analysis. Pp. 14-46. Edward Arnold, London 1982.
  19. Janda, T.: Use of chlorophyll fluorescence induction techniques in the study of low temperature stress in plants. - Acta Agron. Hungarica 46: 77-91, 1998.
  20. Koroleva, O.Y., Brüggeman, W., Krause, G.H.: Photoinhibition, xanthophyll cycle and in vivo chlorophyll fluorescence quenching of chilling-tolerant Oxyria digyna and chillingsensitive Zea mays. - Physiol Plant 92: 577-584, 1994. Go to original source...
  21. Lidon, F.C., Loureiro, A.S., Vieira, D.E., Bilhó, E.A., Nobre, P., Costa, R.: Photoinhibition in chilling stressed wheat and maize. - Photosynthetica 39: 161-166, 2001. Go to original source...
  22. Long, S.P., Zhu, X.G., Naidu, S.L., Ort, D.R.: Can improvement in photosynthesis increase crop yields? - Plant Cell Environ. 29: 315-330, 2006. Go to original source...
  23. Lootens, P., Van Waes, J., Carlier, L.: Effect of a short photoinhibition stress on photosynthesis, chlorophyll a fluorescence and pigment contents of different maize cultivars. Can a rapid and objective stress indicator be found? - Photosynthetica 42: 187-192, 2004. Go to original source...
  24. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  25. Niyogi, K.K., Björkman, O., Grossman, A.R.: Chlamydomonas xanthophylls cycle mutants identified by video imaging of chlorophyll fluorescence quenching. - The Plant Cell 9: 1369-1380, 1997a. Go to original source...
  26. Niyogi, K.K., Björkman, O., Grossman, A.R.: The roles of specific xanthophylls in photoprotection. - PNAS 94, 14162-14167, 1997b. Go to original source...
  27. Oliveira, G., Peñuelas, J.: Effects of winter cold stress on photosynthesis and photochemical efficiency of PSII of the Mediterranean Cistus albidus L. and Quercus ilex L. - Plant Ecol. 175: 179-191, 2004. Go to original source...
  28. Osmond, C.B.: What is photoinhibition? Some insights from comparison of shade and sun plants. - In: Baker, N.R., Bowyer, J.R. (ed.): Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field. Pp. 1-24. Bios Scientific Publ., Oxford 1994.
  29. Roháček, K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. - Photosynthetica 40: 13-29, 2002. Go to original source...
  30. Richter, M., Rühle, W., Wild, A.: Studies on the mechanisms of photosystem II photoinhibition, 1. A 2-step degradation of D1-protein. - Photosynth. Res 24: 229-235, 1990. Go to original source...
  31. Schurr, U., Walter, A., Rascher, U.: Functional dynamics of plant growth and photosynthesis - from-steady state to dynamics - from homogeneity to heterogeneity. - Plant Cell Environ. 29: 340-352, 2006. Go to original source...
  32. Taiz, L., Zeiger, E.: Photosynthesis: the light reactions. - In: Taiz, L., Zeiger, E (ed.): Plant Physiology. Pp. 111-143. Sinauer Associates Inc. Publishers, Sunderland 2002.
  33. Venema, J.H., Eekhof, M., Van Hasselt, P.R.: Analysis of lowtemperature tolerance of a tomato (Lycopersicon esculentum) cybrid with chloroplasts from a more chilling-tolerant L. hirsutum accession. - Ann. Bot. 85: 799-807, 2000. Go to original source...
  34. Verheul, M.J., Picatto, C., Stamp, P.: Growth and development of maize (Zea mays L.) seedlings under chilling conditions in the field. - Eur. J. Agron 5: 31-43, 1996. Go to original source...
  35. Wellburn, A.R.: The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. - J. Plant Physiol. 144: 307-313, 1994. Go to original source...
  36. Wolfe, D.W.: Low temperature effects on early vegetative growth, leaf gas exchange and water potential of chillingsensitive and chilling-tolerant crop species. - Ann. Bot. 67: 205-212, 1991. Go to original source...