Photosynthetica 2017, 55(3):467-477 | DOI: 10.1007/s11099-016-0668-x

Effects of light quality on growth and development, photosynthetic characteristics and content of carbohydrates in tobacco (Nicotiana tabacum L.) plants

L. Y. Yang1, L. T. Wang1, J. H. Ma2, E. D. Ma2, J. Y. Li2, M. Gong1,*
1 School of Life Sciences, Yunnan Normal University, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Key Laboratory of Biomass Energy and Environmental Biotechnology of Yunnan Province, Kunming Cheng gong, China
2 Yunnan Academy of Tobacco Agricultural Sciences, Yu xi, Yunnan, China

In this study, effects of yellow (Y), purple (P), red (R), blue (B), green (G), and white (W) light on growth and development of tobacco plants were evaluated. We showed that monochromatic light reduced the growth, net photosynthetic rate (P N), stomatal conductance, intercellular CO2, and transpiration rate of tobacco. Such a reduction in P N occurred probably due to the stomatal limitation contrary to plants grown under W. Photochemical quenching coefficient (qP), maximal fluorescence of dark-adapted state, effective quantum yield of PSII photochemistry (ΦPSII), and maximal quantum yield of PSII photochemistry (Fv/Fm) of plants decreased under all monochromatic illuminations. The decline in ΦPSII occurred mostly due to the reduction in qP. The increase in minimal fluorescence of dark-adapted state and the decrease in Fv/Fm indicated the damage or inactivation of the reaction center of PSII under monochromatic light. Plants under Y and G showed the maximal nonphotochemical quenching with minimum P N compared with the W plants. Morphogenesis of plants was also affected by light quality. Under B light, plants exhibited smaller angles between stem and petiole, and the whole plants showed a compact type, while the angles increased under Y, P, R, and G and the plants were of an unconsolidated style. The total soluble sugar content increased significantly under B. The reducing sugar content increased under B but decreased significantly under R and G compared with W. In conclusion, different monochromatic light quality inhibited plants growth by reducing the activity of photosynthetic apparatus in plants. R and B light were more effective to drive photosynthesis and promote the plant growth, while Y and G light showed an suppression effect on plants growth. LEDs could be used as optimal light resources for plant cultivation in a greenhouse.

Additional key words: chlorophyll fluorescence; morphogenesis

Received: May 28, 2015; Accepted: August 23, 2016; Published: September 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Yang, L.Y., Wang, L.T., Ma, J.H., Ma, E.D., Li, J.Y., & Gong, M. (2017). Effects of light quality on growth and development, photosynthetic characteristics and content of carbohydrates in tobacco (Nicotiana tabacum L.) plants. Photosynthetica55(3), 467-477. doi: 10.1007/s11099-016-0668-x
Download citation

References

  1. Aasamaa K., Aphalo P.J.: Effect of vegetational shade and its components on stomatal responses to red, blue and green light in two deciduous tree species with different shade tolerance.-Environ. Exp. Bot. 121: 94-101, 2016. Go to original source...
  2. Allen D.J., Ort D.R.: Impacts of chilling temperatures on photosynthesis in warm-climate plants.-Trends Plant Sci. 6: 36-42, 2001. Go to original source...
  3. Andersen R., Kasperbauer M.J.: Chemical composition of tobacco leaves altered by near ultraviolet and intensity of visible light.-Plant Physiol. 51: 723-726, 1973. Go to original source...
  4. Azari R., Tadmor Y., Meir A. et al.: Light signaling genes and their manipulation towards modulation of phytonutrient content in tomato fruits.-Biotechnol. Adv. 28: 108-118, 2010. Go to original source...
  5. Badger M.R., von Caemmerer S., Ruuska S., Nakano H.: Electron flow to oxygen in higher plants and algae rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase.-Philos. T. Roy Soc. B 355: 1433-1445, 2000. Go to original source...
  6. Baker N.R., Rosenqvist E.: Applications of chlorophyll fluorescence can improve crop production stategies: an examination of future possibilities.-J. Exp. Bot. 55: 1607-1621, 2004. Go to original source...
  7. Barrero J.M., Jacobsen J.V., Talbot M.J. et al.: Grain dormancy and light quality effects on germination in the model grass Brachypodium distachyon.-New Phytol. 193: 376-386, 2012. Go to original source...
  8. Briggs W.R., Christie J.M.: Phototropins 1 and 2: versatile plant blue-light receptors.-Trends Plant Sci. 7: 204-210, 2002. Go to original source...
  9. Brown C.S., Schuerger A.C., Sager J.C.: Growth and photomorphogensis of paper plants under red light-emitting diodes with supplemental blue or far-red lighting.-J. Am. Soc. Hortic. Sci. 120: 808-813, 1995. Go to original source...
  10. Buysee J., Merckx R.: An improved colorimetric method to quantify sugar content of plant tissue.-J. Exp. Bot. 44: 1627-1629, 1993. Go to original source...
  11. Dere S., Günes T., Sivaci, R.: Spectrophotometric determination of chlorophyll-a, b and total cartenoid of some algae species using different solvents.-Turk. J. Bot. 22: 13-17, 1998.
  12. Cope K.R., Bugbee B.: Spectral effects of three types of white light-emitting diodes on plant growth and development: absolute versus relative amounts of blue light.-HortScience 48: 504-509, 2013. Go to original source...
  13. Demming-Adams B., Winter K., Krüger A. et al.: Zeaxanthin synthesis, energy dissipation, and photoprotection of PSII at chilling temperature.-Plant Physiol. 90: 894-898, 1989. Go to original source...
  14. Dougher T.A.O., Bugbee B.: Evidence for yellow light suppression of lettuce growth.-Photochem Photobiol. 73: 208-212, 2001. Go to original source...
  15. Frankauser C., Chorry J.: Light control of plant development.-Annu. Rev. Cell. Dev. Bi. 13: 203-229, 1997. Go to original source...
  16. Franklin K.A.: Shade avoidnace.-New Phytol. 179: 930-944, 2008. Go to original source...
  17. Franklin K.A.: Light and temperature signal crosstalk in plant development.-Curr. Opin. Plant Biol. 12: 63-68, 2009. Go to original source...
  18. Folta K.M., Maruhnich S.A.: Green light: a singnal to slow down or stop.-J. Exp. Bot. 58: 3099-3111, 2007. Go to original source...
  19. Folta K.M., Childers K.S.: Light as a growth regulator: controlling plant biology with narrow-bandth solid-state lighting systems.-HortScience 43: 1957-1964, 2008. Go to original source...
  20. Goins G.D., Yorio N.C., Sanwo M.M. et al.: Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodeds (LED) with and without supplemental blue light.-J. Exp. Bot. 48: 1407-1413, 1997. Go to original source...
  21. Heo J.W., Shin K.S., Kim S.K. et al.: Light quality affects in vitro growth of grape 'Teleki 5BB'.-J. Plant Biol. 49: 276-280, 2006. Go to original source...
  22. Hogewoning S.W., Trouwborst G., Maljaars H. et al.: Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combination of red and blue light.-J. Exp. Bot. 61: 3107-3117, 2010. Go to original source...
  23. Iacona C., Muleo R.: Light quality affects in vitro adventitious rooting and ex vitro performance of cherry rootstock Colt.-Sci. Hortic.-Amsterdam 125: 630-636, 2007. Go to original source...
  24. Jensen P.E., Bassi R., Boekema Ej. et al.: Structure, function and regulation of plant photosystem I.-BBA-Bioengertics 1767: 335-352, 2007. Go to original source...
  25. Johkan M., Shoji K., Goto F. et al.: Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce.-HortScience 45: 1809-1814, 2010. Go to original source...
  26. Kasperbauer M.J.: Spetral distribution of light in tobacco canopy and effects of end-of-day light quality on growth and development.-Plant Physiol. 47: 775-778, 1971. Go to original source...
  27. Kasperbauer M.J., Peaslee D.E.: Morphology and photosynthetic efficiency of tobacco leaves that recevied end-of-day red or far red light during development.-Plant Physiol. 52: 440-442, 1973. Go to original source...
  28. Ke X., Li J.Y., Gong M. et al.: [Effects of different light quality on growth and photosynthesis of tobacco (Nicotiana tabacum L.) leaves.]-Plant Physiol. J. 47: 512-520, 2011. [In Chinese]
  29. Ke X., Xu C.H., Gong M. et al.: [Effects of different light quality on anatomical structure, carboxylase activity of ribulose 1, 5-bisphosphate carboxylase oxygenase and expression of rbc and rca genes in tobacco (Nicotiana tabacum L.) leaves].-Plant Physiol. J. 48: 251-259, 2012. [In Chinese]
  30. Kim H.H.: Green light supplementation for enhance lettuce growth under red and blue light-emitting diodes.-HortScience 39: 1617-1622, 2004. Go to original source...
  31. Kim S.J., Hahn E.J., Heo J.W. et al.: Effects of LEDs on net photsynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro.-Sci. Hortic.-Amsterdam 101: 143-151, 2004. Go to original source...
  32. Krause G.H., Weis E.: Chlorophyll fluorescence and photosynthesis: the basics.-Annu. Rev. Plant Phys. 43: 313-349, 1991. Go to original source...
  33. Lee S.H., Tewari R.K., Hahn E.J. et al.: Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania Somnifera (L.) Dunal. plantlets.-Plant Cell Tiss. Org. 90: 141-151, 2007. Go to original source...
  34. Lefebvre S., Lawson T., Fryer M. et al.: Increased sedoheptulose-1, 7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development.-Plant Physiol. 138: 4514-4560, 2005. Go to original source...
  35. Leong T.Y., Anderson J.M.: Adaptation of the thylakoid membranes of pea chloroplasts to light intensity. 1. Study on distribution of chlorophyll-protein complexes.-Photosynth. Res. 5: 105-115, 1984. Go to original source...
  36. Li H.M., Xu Z.G., Tang C.M.: Effects of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) Plantlets in vitro.-Plant Cell Tiss. Org. 103: 155-163, 2010. Go to original source...
  37. Li Q., Kubota C.: Effects of supplemental light quality on growth and phytochemical of baby lettuce.-Environ. Exp. Bot. 67: 59-64, 2009. Go to original source...
  38. Lin K.H., Huang M.Y., Huang W.D. et al.: The effects of red, blue, and white light emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L.var. capitata).-Sci. Hortic.-Amsterdam 150: 86-91, 2013. Go to original source...
  39. Liu M.X., Xu Z.G., Guo S.R. et al.: Evaluation of leaf morphology, structure and biochemical substance of ballon flower (platycodon grandiflorum (Jacq.) A. DC.) plantlets in vitro under different light spectra.-Sci. Hortic.-Amsterdam 174: 112-118, 2014. Go to original source...
  40. Liu X.Y., Guo S.R., Xu Z.G. et al.: Regulation of chloroplast ultrastructure, cross-section anatomy of leaves, and morphology of stomata of cherry tomato by light-emitting diodes.-HortScience 46: 217-221, 2011. Go to original source...
  41. Matsuda R., Ohashi-Kaneko K., Fujiwara K. et al.: Effects of blue deficiency on acclimation of light energy partitioning on PSII and CO2 assimilation capacity to high irradiance in spinach leaves.-Plant Cell Physiol. 49: 664-670, 2008. Go to original source...
  42. Maxwell K., Johnson G.N.: Chlorophyll fluorescence-a practical guide.-J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  43. McMahon M.J., Kelly J.W., Decoteau D.R. et al.: Growth of Dendranthema x grandiflorum (Ramat.) Kitamura under various spectral filter.-J. Am. Soc. Hortic. Sci. 116: 950-954, 1991. Go to original source...
  44. Miyake C., Amako K., Shiraishi N. et al.: Acclimation of tobacco leaves to high intensity drives the plastoquinone oxidation system-relationship among the fraction of open PSII centers, non-photochemical quenching of Chl fluorescence and the maximum quantum yield of PSII in the dark.-Plant Cell Physiol. 50: 730-743, 2009. Go to original source...
  45. Murtas G., Millar A.: How plants tell the time.-Curr. Opin. Plant Biol. 3: 43-46, 2000. Go to original source...
  46. Neff M.M., Fankhauser C., Chory J.: Light: an indicator of time and place.-Genes Dev. 14: 257-271, 2000. Go to original source...
  47. Paul M.J., Pellny T.K.: Carbon metabolite feedback regulation of leaf photosynthesis and development.-J. Exp. Bot. 54: 539-547, 2003. Go to original source...
  48. Pfannschmidt A., Nilsson A., Allen J.F.: Photosynthetic control of chloroplast gene expression.-Nature 397: 625-668, 1999. Go to original source...
  49. Pfündel E., Baake E.: A quantitative description of fluorescence exciation spectra in intact bean leaves greened under intermittent light.-Photosynth. Res. 26: 19-28, 1990. Go to original source...
  50. Poudel P.R., Kataoka I., Mochioka R.: Effects of red-and bluelight-emitting diodes on growth and morphogenesis of grapes.-Plant Cell Tiss. Org. 92: 147-153, 2008. Go to original source...
  51. Sakai T., Kagawa T., Kasahara M. et al.: Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and choroplast relocation.-P. Natl. Acad. Sci. USA 32: 161-172, 2001. Go to original source...
  52. Schuerger A.C., Brown C.S., Stryjewski E.C.: Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodeds supplemented with blue or far red light.-Ann. Bot-London. 79: 273-282, 1997. Go to original source...
  53. Schnettger B.C., Critchley C., Santore U.J. et al.: Relationship between photoinhibition of photosynthesis, D1 protein turnover and chloroplast structure: effects of protein synthesis.-Plant Cell Environ. 17: 55-64, 1994. Go to original source...
  54. Seibert M., Wetherbee P.J., Job D.D.: The effects of light intensity and spectral quality on growth and shoot inititation in tobacco callus.-Plant Physiol. 56: 130-139, 1975. Go to original source...
  55. Shin K.S., Murthy H.N., Heo J.W. et al.: Induction of betalain pigmentation in hairy roots of red beet under different radiation sources.-Biol. Plantarum 47: 149-152, 2003. Go to original source...
  56. Shin K.S., Murthy H.N., Heo J.W. et al.: The effect of light 477 quality on growth and development of in vitro cultured Doritaenopsis plants.-Acta Physiol. Plant. 30: 339-343, 2008. Go to original source...
  57. Su N.N., Wu Q., Shen Z.G. et al.: Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings.-Plant Growth Regul. 73: 227-235, 2014. Go to original source...
  58. Sun W., Ubierna N., Ma J.Y. et al.: The coordination of C4 mechanism in maize and Miscanthus x giganteus in response to transient changes in light quality.-Plant Physiol. 164: 1283-1292, 2014. Go to original source...
  59. Tennessen D.J., Singsaas E.L., Sharkey T.D.: Light-emitting diodes as a light source for photosynthesis research.-Photosynth. Res. 39: 85-92, 1994. Go to original source...
  60. van Kooten O., Snel J.F.: The use of chlorophyll fluorescence nomencalture in plant stress physiology.-Photosynth. Res. 25: 147-150, 1990. Go to original source...
  61. Wang H., Gu M., Cui J. et al.: Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus.-J. Photoch. Photobio. B 96: 30-37, 2009. Go to original source...
  62. Wang H., Jiang Y.P., Yu H.Y. et al.: Light quality affects incidence of powdery mildew, expression of defence-related genes and associated metabolism in cucumber plants.-Eur. J. Plant Pathol. 127: 125-135, 2010. Go to original source...
  63. Wen J.F., Ke X., Gong M. et al.: [Effects of light quality on antioxidant defense system during growth and development of tobacco leaves.]-Acta Bot. Boreal.-Occident. Sin. 31: 1799-1804, 2011. [In Chinese]
  64. Wu M.C., Hou C.Y., Jiang C.M. et al.: A novel approach of LED light radiation improves the antioxidant of pea seedlings.-Food Chem. 101: 1753-1758, 2007. Go to original source...
  65. Xu C.H., Li J.Y., Gong M. et al.: [Effects of supplemental lighting on growth and photosynthesis of tobacco leaves.]-Acta Bot. Boreal. -Occident. Sin. 33: 1-8, 2013. [In Chinese]
  66. Yeh N., Chung J.P.: High-brightness LEDs-Energy efficient lighting and their potential in indoor plant cultivation.-Renew. Sust. Energ. Rev. 13: 2175-2180, 2009. Go to original source...
  67. Yorio N.C., Goins G.D., Kagie H.R.: Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation.-HortScience 36: 380-383, 2001. Go to original source...
  68. Yu H., Ong B.L.: Efects of radiation quality on growth and photosynthesis of Acacia mangium seedlings.-Photosynthetica 41: 349-355, 2003. Go to original source...
  69. Zhao J., Ke X., Xu C.H. et al.: Effects of different light qualities on activity and gene expression of caspase-like proteases in tobacco leaves.-Agri. Sci. Technol.-Hunan 13: 276-279, 2012.
  70. Wen J.F., Ke X., Gong M. et al.: [Effects of light quality on antioxidant defense system during growth and development of tobacco leaves.]-Acta Bot. Boreal.-Occident. Sin. 31: 1799-1804, 2011. [In Chinese]
  71. Xu C.H., Li J.Y., Gong M. et al.: [Effects of supplemental lighting on growth and photosynthesis of tobacco leaves.]-Acta Bot. Boreal. -Occident. Sin. 33: 01-08, 2013. [In Chinese]
  72. Yeh N., Chung J.P.: High-brightness LEDs-Energy efficient lighting and their potential in indoor plant cultivation.-Renew. Sust. Energ Rev. 13: 2175-2180, 2009. Go to original source...
  73. Yu H., Ong B.L.: Efeects ofradiation quality on growth and photosynthesis of Acacia mangium seedlings.-Photosynthetica 41: 349-355, 2003. Go to original source...
  74. Zhao J., Ke X., Gong M. et al.: Effects of different light qualities on activity and gene expression of caspase-like proteases in tobacco leaves.-J. Agr. Sci. Tech-Iran 13: 276-279, 2012.