Photosynthetica 2018, 56(1):229-235 | DOI: 10.1007/s11099-018-0775-y

Analysis of photosystem II electron transfer with natural PsbA-variants by redox polymer/protein biophotoelectrochemistry

V. Hartmann1, A. Ruff2, W. Schuhmann2, M. Rögner1, M. M. Nowaczyk1,*
1 Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
2 Analytical Chemistry-Center for Electrochemical Science (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany

Redox polymer/protein biophotoelectrochemistry was used to analyse forward electron transfer of isolated PSII complexes with natural PsbA-variants. PsbA1- or PsbA3-PSII was embedded in a redox hydrogel that allows diffusion-free electron transfer to the electrode surface and thus measurement of an immediate photocurrent response. The initial photocurrent density of the electrode is up to ~2-fold higher with PsbA1-PSII under all tested light conditions, the most prominent under high-light [2,300 μmol(photon) m-2 s-1] illumination with 5 μA cm-2 for PsbA3-PSII and 9.5 μA cm-2 for PsbA1-PSII. This indicates more efficient electron transfer in low-light-adapted PsbA1-PSII. In contrast, the photocurrent decays faster in PsbA1-PSII under all tested light conditions, which suggests increased stability of high-light-adapted PsbA3-PSII. These results confirm and extend previous observations that PsbA3-PSII has increased P680+*/QA-* charge recombination and thus less efficient photon-to-charge conversion, whereas PsbA1-PSII is optimised for efficient electron transfer with limited stability.

Additional key words: biophotovoltaics; cyanobacteria; D1-protein; hydrogel

Received: July 17, 2017; Accepted: November 28, 2017; Published: March 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hartmann, V., Ruff, A., Schuhmann, W., Rögner, M., & Nowaczyk, M.M. (2018). Analysis of photosystem II electron transfer with natural PsbA-variants by redox polymer/protein biophotoelectrochemistry. Photosynthetica56(SPECIAL ISSUE), 229-235. doi: 10.1007/s11099-018-0775-y
Download citation

Supplementary files

Download filephs-201801-0021_S1.pdf

File size: 247.21 kB

Download filephs-201801-0021_S2.pdf

File size: 216.61 kB

References

  1. Badura A., Esper B., Ataka K. et al.: Light-driven water splitting for (bio-)hydrogen production. Photosystem 2 as the central part of a bioelectrochemical device.-Photochem. Photobiol. 82: 1385-1390, 2006. Go to original source...
  2. Badura A., Guschin D., Esper B. et al.: Photo-induced electron transfer between Photosystem 2 via cross-linked redox hydrogels.-Electroanalysis 20: 1043-1047, 2008. Go to original source...
  3. Baniulis D., Yamashita E., Zhang H. et al.: Structure-function of the cytochrome b6f complex.-Photochem. Photobiol. 84: 1349-1358, 2008. Go to original source...
  4. Clarke A.K., Hurry V.M., Gustafsson P., Oquist G.: Two functionally distinct forms of the photosystem II reactioncenter protein D1 in the cyanobacterium Synechococcus sp. PCC 7942.-P. Natl. Acad. Sci. USA 90: 11985-11989, 1993. Go to original source...
  5. Cox N., Messinger J.: Reflections on substrate water and dioxygen formation.-BBA-Bioenergetics 1827: 1020-1030, 2013. Go to original source...
  6. Dau H., Zaharieva I.: Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation.-Acc. Chem. Res. 42: 1861-1870, 2009 Go to original source...
  7. East G.A., del Valle M.A.: Easy-to-make Ag/AgCl reference electrode.-J. Chem. Educ. 77: 97, 2000. Go to original source...
  8. Habermüller K., Ramanavicius A., Laurinavicius V., Schuhmann W.: An oxygen-insensitive reagentless glucose biosensor based on osmium-complex modified polypyrrole.-Electroanalysis 12: 1383-1389, 2000. Go to original source...
  9. Hartmann V., Kothe T., Pöller S. et al.: Redox hydrogels with adjusted redox potential for improved efficiency in Z-scheme inspired biophotovoltaic cells.-Phys. Chem. Chem. Phys. 16: 11936-11941, 2014. Go to original source...
  10. Holzwarth A.R., Müller M.G., Reus M. et al.: Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center. Pheophytin is the primary electron acceptor.-P. Natl. Acad. Sci. USA 103: 6895-6900, 2006. Go to original source...
  11. Kato M., Cardona T., Rutherford A.W., Reisner E.: Photoelectrochemical water oxidation with photosystem II integrated in a mesoporous indium-tin oxide electrode.-J. Am. Chem. Soc. 134: 8332-8335, 2012a. Go to original source...
  12. Kato Y., Shibamoto T., Yamamoto S. et al.: Influence of the PsbA1/PsbA3, Ca2+/Sr2+ and Cl-/Br-exchanges on the redox potential of the primary quinone QA in Photosystem II from Thermosynechococcus elongatus as revealed by spectroelectrochemistry.-BBA-Bioenergetics 1817: 1998-2004, 2012b. Go to original source...
  13. Kós P.B., Deák Z., Cheregi O., Vass I.: Differential regulation of psbA and psbD gene expression, and the role of the different D1 protein copies in the cyanobacterium Thermosynechococcus elongatus BP-1.-Biochim. Biophys. Acta 1777: 74-83, 2008. Go to original source...
  14. Kothe T., Plumeré N., Badura A. et al.: Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications.-Angew. Chem. Int. Edit. 52: 14233-14236, 2013. Go to original source...
  15. Krieger-Liszkay A., Fufezan C., Trebst A.: Singlet oxygen production in photosystem II and related protection mechanism.-Photosynth. Res. 98: 551-564, 2008. Go to original source...
  16. Krieger-Liszkay A., Rutherford A.W.: Influence of herbicide binding on the redox potential of the quinone acceptor in photosystem II: Relevance to photodamage and phytotoxicity.-Biochemistry 37: 17339-17344, 1998. Go to original source...
  17. Kuhl H., Kruip J., Seidler A. et al.: Towards structural determination of the water-splitting enzyme. Purification, crystallization, and preliminary crystallographic studies of photosystem II from a thermophilic cyanobacterium.-J. Biol. Chem. 275: 20652-20659, 2000. Go to original source...
  18. Nixon P.J., Michoux F., Yu J. et al.: Recent advances in understanding the assembly and repair of photosystem II.-Ann. Bot.-London 106: 1-16, 2010. Go to original source...
  19. Ogami S., Boussac A., Sugiura M.: Deactivation processes in PsbA1-Photosystem II and PsbA3-Photosystem II under photoinhibitory conditions in the cyanobacterium Thermosynechococcus elongatus.-Biochim. Biophys. Acta 1817: 1322-1330, 20 Go to original source...
  20. Sander J., Nowaczyk M., Buchta J. et al.: Functional characterization and quantification of the alternative PsbA copies in Thermosynechococcus elongatus and their role in photoprotection.-J. Biol. Chem. 285: 29851-29856, 2010. Go to original source...
  21. Schaefer M.R., Golden S.S.: Differential expression of members of a cyanobacterial psbA gene family in response to light.-J. Bacteriol. 171: 3973-3981, 1989. Go to original source...
  22. Sicora C.I., Appleton S.E., Brown C.M. et al.: Cyanobacterial psbA families in Anabaena and Synechocystis encode trace, constitutive and UVB-induced D1 isoforms.-BBABioenergetics 1757: 47-56, 2006. Go to original source...
  23. Sokol K.P., Mersch D., Hartmann V. et al.: Rational wiring of photosystem II to hierarchical indium tin oxide electrodes using redox polymers.-Energ. Environ. Sci. 9: 3698-3709, 2016. Go to original source...
  24. Sugiura M., Azami C., Koyama K. et al.: Modification of the pheophytin redox potential in Thermosynechococcus elongatus Photosystem II with PsbA3 as D1.-BBA-Bioenergetics 1837: 139-148, 2014. Go to original source...
  25. Sugiura M., Boussac A.: Some Photosystem II properties depending on the D1 protein variants in Thermosynechococcus elongatus.-BBA-Bioenergetics 1837: 1427-1434, 20 Go to original source...
  26. Sugiura M., Kato Y., Takahashi R. et al.: Energetics in photosystem II from Thermosynechococcus elongatus with a D1 protein encoded by either the psbA1 or psbA3 gene.-Biochim. Biophys. Acta 1797: 1491-1499, 2010. Go to original source...
  27. Sugiura M., Ogami S., Kusumi M. et al.: Environment of TyrZ in photosystem II from Thermosynechococcus elongatus in which PsbA2 is the D1 protein.-J. Biol. Chem. 287: 13336-13347, 2012. Go to original source...
  28. Tichý M., Lupínková L., Sicora C. et al.: Synechocystis 6803 mutants expressing distinct forms of the Photosystem II D1 protein from Synechococcus 7942. Relationship between the psbA coding region and sensitivity to visible and UV-B radiation.-BBA-Bioenergetics 1605: 55-66, 2003. Go to original source...
  29. Trammell S.A., Wang L., Zullo J.M. et al.: Orientated binding of photosynthetic reaction centers on gold using Ni-NTA selfassembled monolayers.-Biosens. Bioelectron. 19: 1649-1655, 2004. Go to original source...
  30. Umena Y., Kawakami K., Shen J.-R., Kamiya N.: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å.-Nature 473: 55-60, 2011. Go to original source...
  31. Vinyard D.J., Gimpel J., Ananyev G.M. et al.: Natural variants of photosystem II subunit D1 tune photochemical fitness to solar intensity.-J. Biol. Chem. 288: 5451-5462, 2013. Go to original source...
  32. Vinyard D.J., Gimpel J., Ananyev G.M. et al.: Engineered Photosystem II reaction centers optimize photochemistry versus photoprotection at different solar intensities.-J. Am. Chem. Soc. 136: 4048-4055, 2014. Go to original source...
  33. Vöpel T., Ning Saw E., Hartmann V. et al.: Simultaneous measurements of photocurrents and H2O2 evolution from solvent exposed photosystem 2 complexes.-Biointerphases 11: 19001, 2015. Go to original source...
  34. Yehezkeli O., Tel-Vered R., Michaeli D. et al.: Photosystem I (PSI)/Photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents.-Small 9: 2970-2978, 2013. Go to original source...
  35. Yehezkeli O., Tel-Vered R., Wasserman J. et al.: Integrated photosystem II-based photo-bioelectrochemical cells.-Nat. Commun. 3: 742, 2012. Go to original source...