Photosynthetica 2018, 56(2):660-669 | DOI: 10.1007/s11099-017-0710-7
Effects of excess cadmium in soil on JIP-test parameters, hydrogen peroxide content and antioxidant activity in two maize inbreds and their hybrid
- 1 Agricultural Institute Osijek, Department of Maize Breeding and Genetics, HR31103, Osijek, Croatia
Excessive cadmium (Cd) content in soil leads to a number of phytotoxic effects and challenges agricultural production. Aim of this study was to investigate different responses of two maize inbreds and their hybrid to an elevated Cd content in soil by measuring photosynthetic and biochemical activity and to identify a Cd tolerance mechanism. Antioxidant statusrelated parameters varied significantly between inbreds and treatments. Dry mass increased in both inbreds, but remained unchanged in hybrid. After the Cd treatment, parameters of chlorophyll a fluorescence varied between inbreds and hybrid performance was similar to inbred B84. We concluded that inbred B84 is Cd-sensitive compared to Os6-2, which did not appear to be negatively affected by Cd treatment at this growth stage studied. We suspect that due to a dilution effect in the hybrid, there was no or very weak Cd stress detected by biochemical parameters, although stress was detected by chlorophyll a fluorescence.
Additional key words: antioxidant enzymes; heavy metal toxicity; JIP test; photosynthesis; photosystem II
Received: November 17, 2016; Accepted: January 19, 2017; Published: June 1, 2018 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
Supplementary files
| Download file | phs-201802-0021_S1.pdf File size: 208.19 kB |
| Download file | phs-201802-0021_S2.pdf File size: 186.63 kB |
References
- Aebi H.: Catalase in vitro. - Methods Enzymol. 105: 121-126, 1984.
Go to original source... - Aghaz M., Bandehagh A.: Phytotoxic effects of cadmium on photosynthesis pigments in dill (Anethum graveolens). - Int. J. Farm. Alli. Sci. 2: 544-548, 2013.
- Anjum S.A., Tanveer M., Hussain S. et al.: Cadmium toxicity in maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. - Environ. Sci. Pollut. R. 22: 17022-17030, 2015.
Go to original source... - Asada K.: Ascorbate peroxidase. - a hydrogen peroxide-scavenging enzyme in plants. - Physiol. Plantarum 85: 235-241, 1992.
Go to original source... - Begović L., Mlilnarić S., Antunović Dunić J. et al.: Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage. - Aquat. Toxicol. 175: 117-126, 2016.
Go to original source... - Brkić I., Šimić D., Zdunić Z. et al.: Combining abilities of cornbelt inbred lines of maize for mineral content in grain. - Maydica 48: 293-297, 2003.
- Burzyński M., Żurek A.: Effects of copper and cadmium on photosynthesis in cucumber cotyledons. - Photosynthetica 45: 239-244, 2007.
Go to original source... - Cakmak I., Štrbac D., Marchner H.: Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. - J. Exp. Bot. 44: 127-132, 1993.
Go to original source... - Chaneva G., Parvanova P., Tzvetkova N., Uzunova A.: Photosynthetic response of maize plants against cadmium and paraquat impact. - Water Air Soil Pollut. 208: 287-293, 2010.
Go to original source... - Chaoui A., Mazhoudi S., Habib Ghorbal M., El Ferjani E.: Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). - Plant Sci. 127: 139-147, 1997.
Go to original source... - Chaudhary S., Sharma Y.K.: Interactive studies of potassium and copper with cadmium on seed germination and early seedling growth in maize (Zea mays L.). - J. Environ. Biol. 30: 427-432, 2009.
- Chien S.H., Menon R.G.: Dilution effect of plant biomass on plant cadmium concentration ad induced by application of phosphate fertilizers. - In: Rodriguez-Barrueco C. (ed.): Fertilizers and Environment. - Development in Plant and Soil Sciences. Pp. 437-442. Kluwer Academic Publishers, Dordrecht 1996.
Go to original source... - Cho U.H., Seo N.H.: Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. - Plant Sci. 168: 113-120, 2005.
Go to original source... - Christen D., Schönmann S., Jermini M. et al.: Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. - Environ. Exp. Bot. 60: 504-514, 2007.
Go to original source... - Ci D., Jiang D., Dai T. et al.: Effects of cadmium on plant growth and physiological traits in contrast wheat recombinant inbred lines differing in cadmium tolerance. - Chemosphere 77: 1620-1625, 2009.
Go to original source... - Da Silva A.J., Nascimento C.W.A., Gouveia-Neto A.S., da Silva-Jr E.A.: LED induced chlorophyll fluorescence spectral analysis for the early detection and monitoring of cadmium toxicity in maize plants. - Water Air Soil Pollut. 223: 3527-3533, 2012.
Go to original source... - Das P., Samantaray S., Rout R.: Studies on cadmium toxicity in plants: a review. - Environ. Pollut. 98: 29-36, 1998.
Go to original source... - De Gara L., Paciolla C., De Tullio M. et al.: Ascorbate-dependent hydrogen peroxide detoxification and ascorbate regeneration during germination of a highly productive maize hybrid: Evidence of an improved detoxification mechanism against reactive oxygen species. - Physiol. Plantarum 109: 7-13, 2000.
Go to original source... - Di Cagno R., Guidi L., Stefani A., Soldatini G.F.: Effects of cadmium on growth of Heliantus annus seedlings: physiological aspects. - New Phytol. 144: 65-71, 1999.
Go to original source... - Di Toppi L.S., Gabbrielli R.: Response to cadmium in higher plants. - Environ. Exp. Bot. 41: 105-130, 1999.
Go to original source... - Drążkiewicz M., Tukendorf A., Baszyński T.: Age dependent response of maize leaf segments to cadmium treatment: Effect on chlorophyll fluorescence and phytochelatin accumulation. - J. Plant Physiol. 160: 247-254, 2003.
Go to original source... - Ekmekçi Y., Tanyolaç D., Ayhan B.: Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. - J. Plant Physiol. 165: 600-611, 2008
Go to original source... - Florijn P.J., van Beusichem M.L.: Uptake and distribution of cadmium in maize inbred lines. - Plant Soil 150: 25-32, 1993.
Go to original source... - Franić M., Sorić R., Lončarić Z. et al.: Genotype variations in maize on cadmium contaminated soil. - In: Jug I., Đurđević B. (ed.): Proceedings of 6th Conference Agriculture in Nature and Environment Protection. Pp. 113-117. Glas Slavonije d.d., Osijek 2013.
- Gallego S.M., Pena L.B., Barcia R.A. et al.: Unraveling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. - Environ. Exp. Bot. 83: 33-46, 2012.
Go to original source... - Grant C.A., Buckley W.T., Bailey L.D., Selles F.: Cadmium accumulation in crops. - Can. J. Plant Sci. 78: 1-17, 1998.
Go to original source... - Havaux M., Strasser R.J.: Dynamics of electron transfer within and between PS II reaction center complexes indicated by the light-saturation curve of in vivo variable chlorophyll fluorescence emission. - Photosynth. Res. 31: 149-156, 1992.
Go to original source... - Jiang H.-X., Chen L.-S., Zheng J.-G. et al.: Aluminium-induced effects on photosystem II photochemistry in citrus leaves assessed by chlorophyll a fluorescence transient. - Tree Physiol. 28: 1863-1871.
Go to original source... - Krall J.P., Edwards G.E.: Relationship between photosystem II activity and CO2 fixation in leaves. - Physiol. Plantarum 86: 180-187, 1992.
Go to original source... - Kalaji H.M.; Loboda T.: Photosystem II of barley seedlings under cadmium and lead stress. - Plant Soil Environ. 53: 511-516, 2007.
Go to original source... - Kalaji H M, Oukarroum A, Alexandrov V et al.: Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. - Plant. Physiol. Bioch. 81: 16-25, 2014.
Go to original source... - Kalaji H.M., Schansker G., Breštić M. et al.: Frequently asked questions about chlorophyll fluorescence, the sequel. - Photosynth. Res.: doi: 10.1007/s11120-016-0318-y, 2016.
Go to original source... - Krantev A., Yordanova R., Janda T. et al.: Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. - J. Plant Physiol. 165: 920-931, 2008.
Go to original source... - Krinsky N.: Antioxidant functions of carotenoids. - Free Radical Bio. Med. 7: 617-635, 1989.
Go to original source... - Küpper H., Küpper F., Spiller M.: Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. - J. Exp. Bot. 47: 259-266, 1996.
Go to original source... - Larsson E.H., Bornman J.F., Asp H.: Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. - J. Exp. Bot. 49: 1031-1039, 1998
Go to original source... - Lee E.A., Tracy W. F.: Modern maize breeding. - In: Bennetzen J., Hake, S. (ed.): Handbook of Maize: Genetics and Genomics. Pp. 141-160. Springer, New York 2009.
Go to original source... - Lichtenthaler H.K., Kuhn G., Prenzel U. et al.: Adaptation of chloroplast-ultrastructure and of chlorophyll-protein levels to high-light and low-light growth conditions. - Z. Naturforsch. 37: 464-475, 1982.
Go to original source... - Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. - Methods Enzymol. 148: 350-382, 1987.
Go to original source... - Mallick N., Mohn F.H.: Use of chlorophyll fluorescence in metal-stress research: a case study with green microalga Scenedesmus. - Ecotox. Environ. Safe. 55: 64-69, 2003.
Go to original source... - Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate. - specific peroxidase in spinach chloroplasts. - Plant Cell. Physiol. 22: 867-880, 1981.
- Pagliano C., Raviolo M., Dalla Vecchia F. et al.: Evidence for PSII donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). - J. Photoch. Photobio. B 84: 70-78, 2006.
Go to original source... - Procházková D., Sairam R.K., Srivastava G.C., Singh D.V.: Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. - Plant Sci. 161: 765-771, 2001.
Go to original source... - R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.Rproject. org/, 2012.
- Ralph P.J., Burchett M.D.: Photosynthetic response of Halophila ovalis to heavy metal stress. - Environ. Pollut. 103: 91-101, 1998.
Go to original source... - Rodríguez-Serrano M., Romero-Puertas M.C., Pazmiño D.M. et al.: Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. - Plant Physiol. 150: 229-243, 2009.
Go to original source... - Romero-Puertas M.C., Palm, J.M., Gómez M. et al.: Cadmium causes the oxidative modification of proteins in pea plants. - Plant Cell Environ. 25: 677-686, 2002.
Go to original source... - Sandalio L.M., Dalurzo H.C., Gómez M. et al.: Cadmiuminduced changes in the growth and oxidative metabolism of pea plants. - J. Exp. Bot. 52: 2115-2126, 2001.
Go to original source... - Schützendübel A., Polle A.: Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhisation. - J. Exp. Bot. 53: 1351-1365, 2002.
Go to original source... - Siegel B.Z., Galston A.W.: The isoperoxidases of Pisum sativum. - Plant Physiol. 42: 221-226, 1967.
Go to original source... - Šimić D., Mladenović Drinić S., Zdunić Z. et al.: Quantitative trait loci for biofortification in maize grain. - J. Hered. 103: 47-54, 2012
Go to original source... - Sorić R., Ledenčan T., Zdunić Z. et al.: Quantitative trait loci for metal accumulation in maize leaf. - Maydica 56: 323-329, 2011.
- Sorić R., Lončarić Z., Kovačević V. et al.: A major gene for leaf cadmium accumulation in maize (Zea mays L.). - In: The Proceedings of the International Plant Nutrition Colloquium XVI. http://escholarship.org/uc/item/1q48v6cf. UC Davis, 2009.
- STAR, version 2.0.1. Biometrics and Breeding Informatics, PBGB Division, International Rice Research Institute. Los Baños, Laguna 2014.
- Stirbet A, Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. - J. Photoch. Photobio. B. 104: 236-257, 2011.
Go to original source... - Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. - Photochem. Photobiol. 61: 32-42, 1995.
Go to original source... - Strasser R.J., Srivastava A., Tsimilli-Michael M.: Analysis of chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dodrecht 2004.
Go to original source... - Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescent transient as a tool to characterize and screen photosynthetic samples. - In: Yunus M., Pathre, U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor and Francis, London 2000.
- Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. - Biochim. Biophys. Acta 1797: 1313-1326, 2010.
Go to original source... - Tuba Z., Saxena D.K., Srivastava K., Kalaji M.H.: Chlorophyll a fluorescence measurements for validating the tolerant bryophytes for heavy metal (Pb) biomapping. - Curr. Sci. 98: 1505-1508, 2010.
- Turnau K., Anielska T., Ryszka P. et al. Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes. - new solution for waste revegetation. - Plant Soil 305: 267-280, 2008.
Go to original source... - Velikova V., Yordanov I., Edreva A.: Oxidative stress and some antioxidant systems in acid-rain treated bean plants. Protective role of exogenous polyamines. - Plant Sci. 151: 59-66, 2000
Go to original source... - Verbruggen N., Hermans C., Schat H.: Mechanisms to cope with arsenic or cadmium excess in plants. - Curr. Opin. Plant Biol. 12: 364-372, 2009.
Go to original source... - Verma S., Dubey R.S.: Leads toxicity induces lipid peroxidation and alters the activities of antioxidant enzxmes in growing rice plants. - Plant Sci. 164: 645-655, 2003.
Go to original source... - Weigel H.J.: Inhibition of photosynthetic reactions of isolated intact chloroplasts by cadmium. - J. Plant Physiol. 119: 179-189, 1985.
Go to original source... - Zhang Z., Jin F., Wang C.: Differences between Pb and Cd accumulation in 19 elite maize inbred lines and application prospects. - J. Biomed. Biotechnol. 2012: 271485, 2012.
Go to original source... - Zhou W., Qiu B.: Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). - Plant Sci. 169: 737-745, 2005.
Go to original source... - Żurek G., Rybka K., Pogrzeba M. et al.: Chlorophyll a fluorescence in evaluation of the effect of heavy metal soil contamination on perennial grasses. - PLOS ONE 9: e91475, 2014.
Go to original source...




