Photosynthetica 2018, 56(4):1387-1397 | DOI: 10.1007/s11099-018-0834-4

Leaf gas exchange and grain yield of common bean exposed to spermidine under water stress

S. Torabian1,*, M. R. Shakiba1, A. Dabbagh Mohammadi Nasab1, M. Toorchi2
1 Department of Ecophysiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

Three prevalent aliphatic polyamines (PAs) include putrescine, spermidine, and spermine; they are low-molecular-mass polycations involved in many physiological processes in plants, especially, under stressful conditions. In this experiment, three bean (Phaseolus vulgaris L.) genotypes were subjected to well-watered conditions and two moderate and severe water-stressed conditions with and without spermidine foliar application. Water stress reduced leaf relative water content (RWC), chlorophyll contents, stomatal conductance (gs), intercellular CO2 concentration (Ci), transpiration rate, maximal quantum yield of PSII (Fv/Fm), net photosynthetic rate (PN), and finally grain yield of bean plants. However, spermidine application elevated RWC, gs, Ci, Fv/Fm, and PN, which caused an increase in the grain yield and harvest index of bean plants under water stress. Overall, exogenous spermidine could be utilized to alleviate water stress through protection of photosynthetic pigments, increase of proline and carotenoid contents, and reduction of malondialdehyde content.

Additional key words: harvest index; number of pods; water deficit

Received: July 21, 2017; Accepted: February 7, 2018; Prepublished online: December 1, 2018; Published: November 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Torabian, S., Shakiba, M.R., Dabbagh Mohammadi Nasab, A., & Toorchi, M. (2018). Leaf gas exchange and grain yield of common bean exposed to spermidine under water stress. Photosynthetica56(4), 1387-1397. doi: 10.1007/s11099-018-0834-4
Download citation

References

  1. Abedi T., Pakniyat H.: Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.).-Czech J. Genet. Plant 46: 27-34, 2010. Go to original source...
  2. Alburquerque N., Egea J., Burgos L. et al.: The influence of polyamines on apricot ovary development and fruit set.-Ann. Appl. Biol. 149: 27-33, 2006. Go to original source...
  3. Alcázar R., Bitrián M., Bartels D. et al.: Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum.-Plant Signal Behav. 6: 243-250, 2011. Go to original source...
  4. Anjum S.A., Xie X., Wang L.C. et al.: Morphological, physiological and biochemical responses of plants to drought stress.-Afr. J. Agr. Res. 6: 2026-2032, 2011.
  5. Bates L.S., Waldren R.P., Teare L.D.: Rapid determination of free proline for water stress studies.-Plant Soil 39: 205-207, 1973. Go to original source...
  6. Bene¹ová M., Holá D., Fischer L. et al.: The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short term dehydration.-PLoS ONE 7: e38017, 2012. Go to original source...
  7. Bertolde F.Z., Almeida A.A.F., Pirovani C.P. et al.: Physiological and biochemical responses of Theobroma cacao L. genotypes to flooding.-Photosynthetica 50: 447-457, 2012. Go to original source...
  8. Besford R.T., Richardson C.M., Campos J.L. et al.: Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves.-Planta 189: 201-206, 1993. Go to original source...
  9. Bibi A.C., Oosterhuis D.M., Gonias E.D.: Exogenous application of putrescine ameliorates the effects of high temperature in Gossypium hirsutum L. flowers and fruit development.-J. Agron. Crop Sci. 196: 205-211, 2010. Go to original source...
  10. Bota J., Flexas J., Medrano H.: Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress?-New Phytol. 162: 671-681, 2004. Go to original source...
  11. Brodribb T.J., Holbrook N.M.: Stomatal closure during leaf dehydration, correlation with other leaf physiological traits.-Plant Physiol. 132: 2166-2173, 2003. Go to original source...
  12. Centritto M.: Photosynthetic limitations and carbon partitioning in cherry in response to water deficit and elevated [CO2].-Agr. Ecosyst. Environ. 106: 233-242, 2005. Go to original source...
  13. Chattopadhayay M.K., Tiwari B.S., Chattopadhyay G. et al.: Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants.-Physiol. Plantarum 116: 192-199, 2002. Go to original source...
  14. Chaves M.M., Maroco J.P., Pereira J.S.: Understanding plant response to drought: from genes to the whole plant.-Funct. Plant Biol. 30: 239-264, 2003. Go to original source...
  15. Demmig-Adams B., Adams W.W. III: Photoprotection and other responses of plants to high light stress.-Annu. Rev. Plant Phys. 43: 599-626, 1992. Go to original source...
  16. Dietz K.J., Pfannschmidt T.: Novel regulators in photosynthetic redox control of plant metabolism and gene expression.-Plant Physiol. 155: 1477-1485, 2011. Go to original source...
  17. Dionisio-Sese M.L., Tobita S.: Antioxidant responses of rice seedlings to salinity stress.-Plant Sci. 135: 1-9, 1998. Go to original source...
  18. Duan H.G., Yuan S., Liu W.J. et al.: Effects of exogenous spermidine on photosystem II of wheat seedlings under water stress.-J. Integr. Plant Biol. 48: 920-927, 2006. Go to original source...
  19. Eskling M., Arvidsson P.O., Åkerlund H.E.: The xanthophylls cycle, its regulation and components.-Physiol. Plantarum 100: 806-816, 1997. Go to original source...
  20. Farooq M., Wahid A., Lee D.J.: Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties.-Acta Physiol. Plant. 31: 937-945, 2009. Go to original source...
  21. Foyer C.H., Descourvieres P., Kunert K.J.: Photo oxidative stress in plants.-Plant Physiol. 92: 696-717, 1994. Go to original source...
  22. Govindjee.: On the requirement of minimum number of four versus eight quanta of light for the evolution of one molecule of oxygen in photosynthesis: A historical note.-Photosynth. Res. 59: 249-254, 1999. Go to original source...
  23. Groppa M.D., Benavides M.P.: Polyamines and abiotic stress: recent advances.-Amino Acids 34: 35-45, 2008. Go to original source...
  24. Gupta S., Gupta N.: Field efficacy of exogenously applied putrescine in wheat (Triticum aestivum L.) under water-stress conditions.-Indian J. Agr. Sci. 81: 516-519, 2011.
  25. Ioannidis N.E., Cruz J.A., Kotzabasis K. et al.: Evidence that putrescine modulates the higher plant photosynthetic proton circuit.-PLoS ONE 7:e29864, 2012. Go to original source...
  26. Islam M.A., Blake T.J., Kocacinar F. et al.: Ambiol, spermine and aminoethoxyvinylglycine prevent water stress and protect membrane in Pinus strobus under drought.-Tree Struct. Funct. 17: 278-284, 2003. Go to original source...
  27. Kusano T., Berberich T., Tateda C. et al.: Polyamines: essential factors for growth and survival.-Planta 228: 367-381, 2008. Go to original source...
  28. Li W.D., Hou J.L., Wang W.Q. et al.: Effect of water deficit on biomass production and accumulation of secondary metabolites in roots of Glycyrrhiza uralensis.-Russ. J. Plant Physl+ 58: 538-542, 2011. Go to original source...
  29. Li Z., Zhou H., Peng Y. et al.: Exogenously applied spermidine improves drought tolerance in creeping bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones.-Plant Growth Regul. 76: 71-82, 2015. Go to original source...
  30. Lichtenthaler H.K., Wellburn A.R.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents.-Biochem. Soc. T. 11: 591-59, 1983. Go to original source...
  31. Mahajan S., Tuteja N.: Cold, salinity and drought stresses: an overview.-Arch. Biochem. Biophys. 444: 139-158, 2005. Go to original source...
  32. Martínez J.P., Silva H., Ledent J.F. et al.: Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.).-Eur. J. Agron. 26: 30-38, 2007. Go to original source...
  33. Massacci A., Nabiev S.M., Pietrosanti L. et al.: Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gasexchange analysis and chlorophyll fluorescence imaging.-Plant Physiol. Bioch. 46: 189-195, 2008. Go to original source...
  34. Miller G., Suzuki N., Ciftci-Yilmaz S. et al.: Reactive oxygen species homeostasis and signalling during drought and salinity stresses.-Plant Cell Environ. 33: 453-467, 2010. Go to original source...
  35. Misra A.N., Latowski D., Strzalka K.: The xanthophyll cycle activity in kidney bean and cabbage leaves under salinity stress.-Russ. J. Plant Physl+ 53: 102-109, 2006. Go to original source...
  36. Ndayiragije A., Lutts S.: Long term exogenous putrescine application improves grain yield of a salt-sensitive rice cultivar exposed to NaCl.-Plant Soil 291: 225-238, 2007. Go to original source...
  37. Nezhadahmadi A., Prodhan Z.H., Faruq G.: Drought tolerance in wheat.-Sci. World J. 12: 610721, 2013. Go to original source...
  38. Nounjan N., Nghia P.T., Theerakulpisut P.: Exogenous proline and trehalose promote recovery of rice seedling from salt-stress and differentially modulate antioxidants enzymes and expression of related genes.-J. Plant Physiol. 169: 596-604, 2012. Go to original source...
  39. Rosales M.A., Ríos J.J., Cervilla L.M. et al.: Environmental conditions in relation to stress in cherry tomato fruits in two experimental Mediterranean greenhouses.-J. Sci. Food Agric. 89: 735-742, 2009. Go to original source...
  40. Rouhi V., Samson R., Lemeur R. et al.: Photosynthetic gas exchange characteristics in three different almond species during drought stress and subsequent recovery.-Environ. Exp. Bot. 59: 117-129, 2007. Go to original source...
  41. Roychoudhury A., Basu S., Sengupta D.N.: Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance.-J. Plant Physiol. 168: 317-328, 2011. Go to original source...
  42. Sagor G.H.M., Berberich T., Takahashi Y. et al.: The polyamine spermine protects Arabidopsis form heat stress-induced damage by increasing expression of heat shock-related genes.-Transgenic Res. 22: 595-605, 2013. Go to original source...
  43. Saleethong P., Sanitchon J., Kong-ngern K. et al.: Effects of exogenous spermidine (Spd) on yield, yield-related parameters and mineral composition of rice (Oryza sativa L. ssp. indica) grains under salt stress.-Aust. J. Crop. Sci. 7: 1293-1301, 2013.
  44. Sánchez-Rodríguez E., del Mar Rubio-Wilhelmi M., Blasco B. et al.: Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under water stress.-Plant Sci. 188-189: 86-96, 2012. Go to original source...
  45. Sfakianaki M., Sfichi L., Kotzabasis K.: The involvement of LHCII-associated polyamines in the response of the photosynthetic apparatus to low temperature.-J. Photoch. Photobio. B 84: 181-188, 2006. Go to original source...
  46. Shukla V., Ma Y.M., Merewitz E.: Creeping bentgrass responses to drought stress and polyamine application.-J. Am. Soc. Hortic. Sci. 140: 94-101, 2015. Go to original source...
  47. Singh S.K., Reddy K.R.: Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought.-J. Photoch. Photobio. B 105: 40-50, 2011. Go to original source...
  48. Snider J.L., Collins G.D., Whitaker J. et al.: Electron transport trough photosystem II is not limited by a wide range of water deficit conditions in field-grown Gossypium hirsutum.-J. Agro. Crop Sci. 200: 77-82, 2014. Go to original source...
  49. Subrahmanyam D., Subash Y.S., Haris A. et al.: Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought.-Photosynthetica 44: 125-129, 2006. Go to original source...
  50. Sucre B., Suarez N.: Effect of salinity and PEG-induced water stress on water status, gas exchange, solute accumulation, and leaf growth in Ipomoea pescaprae.-Environ. Exp. Bot. 70: 192-203, 2011. Go to original source...
  51. Yin Z.P., Li S., Ren J. et al.: Role of spermidine and spermine in alleviation of drought-induced oxidative stress and photosynthetic inhibition in Chinese dwarf cherry (Cerasus humilis) seedlings.-Plant Growth Regul. 74: 209-218, 2014. Go to original source...
  52. Yue Y., Zhang M., Zhang J. et al.: Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton.-J. Exp. Bot. 63: 3741-3748, 2012. Go to original source...
  53. Zhang B., Li F.M., Huang G. et al.: Yield performance of spring wheat improved by regulated deficit irrigation in an arid area.-Agr. Water Manage. 79: 28-42, 2006. Go to original source...
  54. Zhang R.H., Li J., Guo S.R. et al.: Effects of exogenous putrescine on gas exchange characteristics and chlorophyll fluorescence of NaCl-stressed cucumber seedlings.-Photosynth. Res. 100: 155-162, 2009. Go to original source...