Photosynthetica 2019, 57(2):475-482 | DOI: 10.32615/ps.2019.062

The differential carbon-fixing and nitrogen-assimilating enzyme activities of Oscillatorian marine cyanobacterium Phormidium valderianum BDU 20041

G. DINESHBABU1,2, V.S. UMA1,3, M. SHYLAJANACIYAR1, V. RASHMI1,5, D. PRABAHARAN1, L. UMA1
1 National Facility for Marine Cyanobacteria, Department of Marine Biotechnology, School of Marine Sciences, Bharathidasan University, 620 024 Tiruchirappalli, Tamil Nadu, India
2 Bioprocess Development Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
3 Environmental Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
5 Department of Microbiology, Srimad Andavan College of Arts and Science, Tiruchirappalli, Tamil Nadu, India

We have identified an efficient filamentous marine cyanobacterium, Phormidium valderianum BDU 20041, which was adaptive to different concentrations of CO2. In our study, P. valderianum BDU 20041 was grown under ambient (0.04) and elevated (2, 3, 4, 5, 10, and 15%) CO2 concentration. Its optimal growth occurred at 3% CO2 supply. P. valderianum displayed similar carbon fixation activities through Rubisco, phosphoenolpyruvate carboxylase (PEPC), carbonic anhydrase, and malate dehydrogenase. The activity of Rubisco, the primary carbon-fixing enzyme, was found to be approximately 80% higher in P. valderianum grown under 4% CO2 than under ambient air. This was substantiated by Western blot. The nitrogen-assimilating enzymes shared a similar trend at higher CO2 concentrations. Our study is one of the few reports that examined the activities of CO2-fixing and nitrogen-assimilating enzymes together. Due to the active PEPC, this cyanobacterium was found to have active C3 and C4 enzymes that promoted higher CO2 fixation and cellular growth. Thus, it may be an efficient organism for biotechnological exploitation.

Additional key words: biomass productivity; elevated CO2 concentration; nitrate reductase; nitrite reductase.

Received: May 5, 2018; Accepted: November 29, 2018; Prepublished online: April 16, 2019; Published: May 16, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
DINESHBABU, G., UMA, V.S., SHYLAJANACIYAR, M., RASHMI, V., PRABAHARAN, D., & UMA, L. (2019). The differential carbon-fixing and nitrogen-assimilating enzyme activities of Oscillatorian marine cyanobacterium Phormidium valderianum BDU 20041. Photosynthetica57(2), 475-482. doi: 10.32615/ps.2019.062
Download citation

References

  1. Baker B.R., Bramhall R.R.: Irreversible enzyme inhibitors. 189. Inhibition of some dehydrogenases by derivatives of 4-hydro-xyquinoline-2 and -3-carboxylic acids. - J. Med. Chem. 15: 230-233, 1972. Go to original source...
  2. Barcelos e Ramos J., Biswas H., Schulz K.G. et al.: Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium. - Global Biogeochem. Cy. 21: doi: 10.1029/2006GB002898, 2007. Go to original source...
  3. Burkhardt S., Amoroso G., Riebesell U., Sültemeyer, D.: CO2 and HCO3- uptake in marine diatoms acclimated to different CO2 concentrations. - Limnol. Oceanogr. 46: 1378-1391, 2001. Go to original source...
  4. Chen X., Gao K.: Effect of CO2 concentrations on the activity of photosynthetic CO2 fixation and extracellular carbonic anhydrase in the marine diatom Skeletonema costatum. - Chinese Sci. Bull. 48: 2616-2620, 2003. Go to original source...
  5. Cheng L., Fuchigami L.H.: Rubisco activation state decreases with increasing nitrogen content in apple leaves. - J. Exp. Bot. 51: 1687-1694, 2000. Go to original source...
  6. Chiu S.-Y., Kao C.-Y., Chen C.-H. et al.: Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. - Bioresource Technol. 99: 3389-3396, 2008. Go to original source...
  7. de Morais M.G., Costa J.A.V.: Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. - Energ. Convers. Manage. 48: 2169-2173, 2007. Go to original source...
  8. Flores E., Herrero A.: Assimilatory nitrogen metabolism and its regulation. - In: Bryant D.A. (ed.): The Molecular Biology of Cyanobacteria. Pp. 487-517. Kluwer Academic Publishers, Dordrecht, 1994. Go to original source...
  9. Fonseca F., Bowsher C.G., Stulen I.: Impact of elevated atmo-spheric CO2 on nitrate reductase transcription and activity in leaves and roots of Plantago major. - Physiol. Plantarum 100: 940-948, 1997. Go to original source...
  10. Friedberg D., Kaplan A., Ariel R. et al.: The 5'-flanking region of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is crucial for growth of the cyanobacterium Synechococcus sp. strain PCC 7942 at the level of CO2 in air. - J. Bacteriol. 171: 6069-6076, 1989. Go to original source...
  11. Fu F.X., Warner M.E., Zhang Y. et al.: Effects of increased temperature and CO2 on photosynthesis, growth, and elemen-tal ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). - J. Phycol. 43: 485-496, 2007. Go to original source...
  12. Geiger M., Haake V., Ludewig F. et al.: The nitrate and ammonium nitrate supply have a major influence on the response of pho-tosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. - Plant Cell Environ. 22: 1177-1199, 1999. Go to original source...
  13. Harano K., Ishida H., Kittaka R. et al.: Regulation of the ex-pression of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) in a cyanobacterium, Synechococcus PCC7942. -Photosynth. Res. 78: 59-65, 2003. Go to original source...
  14. Hayashi N.R., Ishida T., Peerapornpisal Y. et al.: Effect of carbon dioxide concentration on the growth and RuBisCO activity of a thermophilic cyanobacterium, Chroococcidiopsis sp. strain TS-821. - J. Ferment. Bioeng. 80: 507-509, 1995. Go to original source...
  15. Herrero A., Guerrero M.G.: Regulation of nitrite reductase in the cyanobacterium Anacystis nidulans. - Microbiology+ 132: 2463-2468, 1986. Go to original source...
  16. Hudson G.S., Evans J.R., von Caemmerer S. et al.: Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase content by antisense RNA reduces photosynthesis in transgenic tobacco plants. - Plant Physiol. 98: 294-302, 1992. Go to original source...
  17. Hutchins D.A., Fu F. X., Zhang Y. et al.: (2007) CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry. - Limnol Oceanogr. 52:1293-1304, 2007. Go to original source...
  18. Jacob-Lopes E., Franco T.T.: From oil refinery to microalgal biorefinery. - J. CO2 Util. 2: 1-7, 2013. Go to original source...
  19. Jaiswal P., Prasanna R., Kashyap A.K.: Modulation of carbonic anhydrase activity in two nitrogen fixing cyanobacteria, Nostoc calcicola and Anabaena sp. - J. Plant Physiol. 162: 1087-1094, 2005. Go to original source...
  20. Johnson T.J., Jahandideh A., Isaac I.C. et al.: Determining the optimal nitrogen source for large-scale cultivation of fila-mentous cyanobacteria. - J. Appl. Phycol. 29: 1-13, 2017. Go to original source...
  21. Jouanneau Y., Tabita F.R.: In vivo regulation of form I ribulose 1,5-bisphosphate carboxylase/oxygenase from Rhodopseudo-monas sphaeroides. - Arch. Biochem. Biophys. 254: 290-303, 1987. Go to original source...
  22. Kranz S.A., Levitan O., Richter, K.-U. et al.: Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodes-mium IMS101: Physiological responses. - Plant Physiol. 154: 334-345, 2010. Go to original source...
  23. Levitan O., Rosenberg G., ©etlík I. et al.: Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium. - Glob. Change Biol. 13: 531-538, 2007. Go to original source...
  24. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J.: Protein measurement with the Folin phenol reagent. - J. Biol. Chem. 193: 265-275, 1951. Go to original source...
  25. Moroney J., Somanchi A.: How do algae concentrate CO2 to increase the efficiency of photosynthetic carbon fixation? - Plant Physiol. 119: 9-16, 1999. Go to original source...
  26. NOAA, Earth System Research Laboratory. http://www.esrl.noaa.gov/gmd/ccgg/trends/, 2018.
  27. Omoto E., Taniguchi M., Miyake H.: Adaptation responses in C4 photosynthesis of maize under salinity. - J. Plant Physiol. 169: 469-477, 2012. Go to original source...
  28. Owttrim G.W., Colman B.: Purification and characterization of phosphoenolpyruvate carboxylase from a cyanobacterium. - J. Bacteriol. 168: 207-212, 1986. Go to original source...
  29. Perchorowicz J.T., Raynes D.A., Jensen R.G.: Light limitation of photosynthesis and activation of ribulose bisphosphate carboxylase in wheat seedlings. - P. Natl. Acad. Sci. USA 78: 2985-2989, 1981. Go to original source...
  30. Pierce J., Carlson T.J., Williams J.G.A.: Cyanobacterial mutant requiring the expression of ribulose bisphosphate carboxylase from a photosynthetic anaerobe. - P. Natl. Acad. Sci. USA 86: 5753-5757, 1989. Go to original source...
  31. Price G.D., Badger M.R.: Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC7942 creates a high CO2-requiring phenotype: evidence for a central role for carboxysomes in the CO2 concentrating mechanism. - Plant Physiol. 91: 505-513, 1989. Go to original source...
  32. Raven J.A.: The role of marine biota in the evolution of terrestrial biota: gases and genes. - Biogeochemistry 39: 139-164, 1997. Go to original source...
  33. Rippka R., Deruelles J., Waterbury J.B. et al.: Generic assign-ments, strain histories and properties of pure cultures of Cyanobacteria. - Microbiology 111: 1-61, 1979. Go to original source...
  34. Shapiro B.M., Stadtman E.R.: Glutamine synthetase (Escherichia coli). - In: Tabor H., White Tabor C.: Methods in Enzymology. Metabolism of Amino Acids and Amines. Part A. Pp. 910-922. Elsevier, 1970. Go to original source...
  35. Shiraiwa Y., Miyachi S.: Role of carbonic anhydrase in photo-synthesis of blue-green alga (cyanobacterium) Anabaena variabilis ATCC 29413. - Plant Cell Physiol. 26: 109-116, 1985.
  36. Shylajanaciyar M., Dineshbabu G., Rajalakshmi R. et al.: Ana-lysis and elucidation of phosphoenolpyruvate carboxylase in cyanobacteria. - Protein J. 34: 73-81, 2015. Go to original source...
  37. Sicher R.C., Kremer D.F., Rodermel S.R.: Photosynthetic acclimation to elevated CO2 occurs in transformed tobacco with decreased ribulose-1,5-bisphosphate carboxylase/oxygenase content. - Plant Physiol. 104: 409-415, 1994. Go to original source...
  38. Stöckel J., Elvitigala T.R., Liberton M., Pakrasi H.B.: Carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142. - PLoS ONE 8: e56887, 2013. Go to original source...
  39. Tang D., Han W., Li P. et al.: CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyre-noidosa in response to different CO2 levels. - Bioresource Technol. 102: 3071-3076, 2011. Go to original source...
  40. Tortell P.D.: Evolutionary and ecological perspectives on carbon acquisition in phytoplankton. - Limnol. Oceanogr. 45: 744-750, 2000. Go to original source...
  41. Wilbur K.M., Anderson N.G.: Electrometric and colorimetric determination of carbonic anhydrase. - J. Biol. Chem. 176: 147-154, 1948. Go to original source...