Photosynthetica 2019, 57(4):921-930 | DOI: 10.32615/ps.2019.110

Photosynthesis response to severe water deficit in terminal stems of Myriolimon ferulaceum

M.À. CONESA, J. GALMÉS
Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Ctra. Valldemossa km. 7.5, 07122 Palma, Balearic Islands

Myriolimon ferulaceum is a leafless species and close relative to Limonium inhabiting the same harsh environments in the rocky coast and salt marshes, with discontinuous distribution in western and central coast of the Mediterranean Basin and southern Iberian Peninsula. In order to test for the drought adaptive importance of photosynthesis in stems, and to decipher advantages and drawbacks of stem vs. leaf photosynthesis under drought conditions, M. ferulaceum was grown under the well-watered and severe water deficit conditions used in previous experiments with Limonium. Growth, stem anatomy, photosynthesis and gas exchange, and Rubisco-related traits were measured. Growth capacity in M. ferulaceum was higher than that of many Limonium under well-watered conditions, where limitations to photosynthesis were mostly biochemical. However, severe water deficit conditions had a higher impact in the leafless species, where the main photosynthesis limitation was stomatal conductance. High intrinsic water-use efficiency under well-watered conditions and high mesophyll conductance to stomatal conductance ratio under severe water deficit conditions were the main drivers of growth capacity in M. ferulaceum.

Additional key words: biomass; limitation analysis; rbcL; Rubisco kinetics; water consumption; water stress.

Received: January 7, 2019; Accepted: July 10, 2019; Prepublished online: August 8, 2019; Published: November 1, 2019  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
CONESA, M.À., & GALMÉS, J. (2019). Photosynthesis response to severe water deficit in terminal stems of Myriolimon ferulaceum. Photosynthetica57(4), 921-930. doi: 10.32615/ps.2019.110
Download citation

Supplementary files

Download file2168 fig. 2S.jpg

File size: 988.8 kB

Download file2168 Table 1S.docx

File size: 12.74 kB

Download file2168 fig. 3S.jpg

File size: 502.25 kB

Download file2168 fig. 1S.jpg

File size: 2.08 MB

References

  1. Ambràmoff M.D., Magalhães P.J., Ram S.J.: Image processing with ImageJ. - Biophotonics Int. 11: 36-42, 2004.
  2. Aschan G., Pfanz H.: Non-foliar photosynthesis - a strategy of additional carbon acquisition. - Flora 198: 81-97, 2003. Go to original source...
  3. Ávila E., Herrera A., Tezara W.: Contribution of stem CO2 fixa-tion to whole-plant carbon balance in nonsucculent species. -Photosynthetica 52: 3-15, 2014. Go to original source...
  4. Ávila-Lovera E., Zerpa A.J., Santiago L.S.: Stem photosyntheis and hydraulics are coordinated in desert plant species. - New Phytol. 216: 1119-1129, 2017. Go to original source...
  5. Bernacchi C.J., Portis A.R., Nakano H. et al.: Temperature response of mesophyll conductance. Implications for the deter- mination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. - Plant Physiol. 130: 1992-1998, 2002. Go to original source...
  6. Berveiller D., Kierzkowski D., Damesin C.: Interspecific varia-bility of stem photosynthesis among tree species. - Tree Physiol. 27: 53-61, 2007. Go to original source...
  7. Bréda N., Huc R., Granier A., Dreyer E.: Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. -Ann. For. Sci. 63: 625-644, 2006. Go to original source...
  8. Carriquí M., Cabrera H.M., Conesa M.À. et al.: Diffusional limitations explain the lower photosynthetic capacity of ferns as compared with angiosperms in a common garden study. - Plant Cell Environ. 38: 448-460, 2015. Go to original source...
  9. Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. - Ann. Bot.-London 103: 551-560, 2009. Go to original source...
  10. Chaves M.M., Maroco J.P., Pereira J.S.: Understanding plant responses to drought - from genes to the whole plant. - Funct. Plant Biol. 30: 239-264, 2003. Go to original source...
  11. Chaves, M.M., Pereira J.S., Maroco J. et al.: How plants cope with water stress in the field. Photosynthesis and growth. - Ann. Bot.-London 89: 907-916, 2002. Go to original source...
  12. Comstock J.P., Ehleringer J.R.: Contrasting photosynthetic behavior in leaves and twigs of Hymenoclea salsola, a green-twigged warm desert shrub. - Am. J. Bot. 75: 1360-1370, 1988. Go to original source...
  13. Conesa M.À., Mus M., Galmés J.: Leaf size as a key determinant of contrasting growth patterns in closely related Limonium (Plumbaginaceae) species under well-watered and severe water deficit conditions. - J. Plant Physiol. 240: 152984, 2019. Go to original source...
  14. Correia O., Ascensão L.: Summer semi-deciduous species of the Mediterranean landscape: A winning strategy of Cistus species to face the predicted changes of the Mediterranean climate. - In: Ansari A.A., Gill S.S., Abbas Z.K., Naeem M. (ed.): Plant Biodiversity: Monitoring, Assessment and Conservation. Pp. 195-217. CABI International, Wallingford 2017. Go to original source...
  15. Erben M.: Limonium. - In: Castroviejo S., Aedo C., Cirujano S. et al. (ed.): Flora Iberica. Vol. 3. Pp. 2-143. Real Jardín Botánico-C.S.I.C., Madrid 1993.
  16. Farquhar G., von Caemmerer S., Berry J.A.: A biochemical-model of photosynthetic CO2 assimilation in leaves of C3 species. - Planta 149: 78-90, 1980. Go to original source...
  17. Flexas J., Díaz-Espejo A., Berry J.A. et al.: Analysis of leakage in IRGA's leaf chambers of open gas photosynthesis para-meterization. - J. Exp. Bot. 58: 1533-1543, 2007. Go to original source...
  18. Flexas J., Díaz-Espejo A., Conesa M.À. et al.: Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. - Plant Cell Environ. 39: 965-982, 2016. Go to original source...
  19. Flexas J., Díaz-Espejo A., Gago J. et al.: Photosynthetic limita-tions in Mediterranean plants: a review. - Environ. Exp. Bot. 103: 12-23, 2014. Go to original source...
  20. Flexas J., Niinemets U., Gallé A. et al.: Diffusional conductances to CO2 as a target for increasing photosynthetic water-use efficiency. - Photosynth. Res. 117: 45-59, 2013. Go to original source...
  21. Galmés J., Andralojc P.J., Kapralov M.V. et al.: Environmentally driven evolution of Rubisco and improved photosynthesis and growth within the C3 genus Limonium (Plumbaginaceae). - New Phytol. 203: 989-999, 2014. Go to original source...
  22. Galmés J., Flexas J., Keys A.J. et al.: Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. - Plant Cell Environ. 28: 571-579, 2005. Go to original source...
  23. Galmés J., Flexas J., Savé R., Medrano H.: Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits: responses to water stress and recovery. - Plant Soil 290: 139-155, 2007a. Go to original source...
  24. Galmés J., Medrano H., Flexas J.: Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. - New Phytol. 175: 81-93, 2007b. Go to original source...
  25. Galmés J., Molins A., Flexas J., Conesa M.À.: Coordination between leaf CO2 diffusion and Rubisco properties allow maximizing photosynthetic efficiency in Limonium species. - Plant Cell Environ. 40: 2081-2094, 2017. Go to original source...
  26. Galmés J., Perdomo J.A., Flexas J., Whitney S.M.: Photosynthetic characterization of Rubisco transplantomic lines reveals alterations on photochemistry and mesophyll conductance. - Photosynth. Res. 115: 153-166, 2013. Go to original source...
  27. Grassi G., Magnani F.: Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. - Plant Cell Environ. 28: 834-849, 2005. Go to original source...
  28. Harley P.C., Loreto F., Di Marco G., Sharkey T.D.: Theoretical considerations when estimating the mesophyll conductance to CO2 flux by the analysis of the response of photosynthesis to CO2. - Plant Physiol. 98: 1429-1436, 1992. Go to original source...
  29. Lawlor D.W., Cornic G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. - Plant Cell Environ. 25: 275-294, 2002. Go to original source...
  30. Lledó M.D., Erben M., Crespo M.B.: Myriolepis, a new genus segregated from Limonium (Plumbaginaceae). - Taxon 52: 67-73, 2003. Go to original source...
  31. Lledó M.D., Erben M., Crespo M.B.: Myriolimon, a new name for a recently published Myriolepis (Plumbaginaceae). - Taxon 54: 811-812, 2005. Go to original source...
  32. Ludlow M.M.: Strategies of response to water stress. - In: Kreeb K.H., Richter H., Hinckley T.M. (ed.): Structural and Functional Responses to Environmental Stresses. Pp. 269-281. SPB Academic Publishing, The Hague 1989.
  33. Martins S.C.V., Galmés J., Molins A., DaMatta F.M.: Improving the estimation of mesophyll conductance to CO2: on the role of electron transport rate correction and respiration. - J. Exp. Bot. 64: 3285-3298, 2013. Go to original source...
  34. McDowell N., Pockman W.T., Allen C.D. et al.: Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? - New Phytol. 178: 719-739, 2008. Go to original source...
  35. Munns R.: Comparative physiology of salt and water stress. - Plant Cell Environ. 25: 239-250, 2002. Go to original source...
  36. Nardini A., Lo Gullo M.A., Trifilò P., Salleo S.: The challenge of the Mediterranean climate to plant hydraulics: Responses and adaptations. - Environ. Exp. Bot. 103: 68-79, 2014. Go to original source...
  37. Nilsen E.T.: Stem photosynthesis: extent, patterns, and role in plant carbon economy. - In: Gartner B.L. (ed.): Plant Stems. Pp. 223-240. Academic Press, San Diego 1995. Go to original source...
  38. Nilsen E.T., Bao Y.: The influence of water stress on stem and leaf photosynthesis in Glycine max and Sparteum junceum (Leguminosae). - Amer. J. Bot. 77: 1007-1015, 1990. Go to original source...
  39. Nilsen E.T., Sharifi M.: Carbon isotopic composition of legumes with photosynthetic stems from mediterranean and desert habitats. - Am. J. Bot. 84: 1707-1713, 1997. Go to original source...
  40. Osmond C.B., Smith S.D., Gui-Ying B., Sharkey T.D.: Stem photosynthesis in a desert ephemeral, Eriogonum inflatum. Characterization of leaf and stem CO2 fixation and H2O vapor exchange under controlled conditions. - Oecologia 72: 542-549, 1987. Go to original source...
  41. Pfanz H., Aschan G., Langenfeld-Heyser R. et al.: Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. - Naturwissenschaften 89: 147-162, 2002. Go to original source...
  42. Santiago L.S., Bonal D., De Guzman M.E., Ávila-Lovera E.: Drought survival strategies of tropical trees. - In: Goldstein G., Santiago L.S. (ed.): Tropical Tree Physiology. Pp. 243-258. Springer International Publishing, Basel 2016. Go to original source...
  43. Scoffoni C., Chatelet D.S., Pasquet-Kok J. et al.: Hydraulic basis for the evolution of photosynthetic productivity. - Nat. Plants 2: 16072, 2016. Go to original source...
  44. Tinoco-Ojanguren C.: Diurnal and seasonal patterns of gas exchange and carbon gain contribution of leaves and stems of Justicia californica in the Sonoran Desert. - J. Arid Environ. 72: 127-140, 2008. Go to original source...
  45. Tomàs M., Flexas J., Copolovici L. et al.: Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. - J. Exp. Bot. 64: 2269-2281, 2013. Go to original source...
  46. Vandegehuchte M.W., Bloemen J., Vergeynst L.L., Steppe K.: Woody tissue photosynthesis in trees: salve on the wounds of drought? - New Phytol. 208: 998-1002, 2015. Go to original source...
  47. Yokota A., Canvin D.T.: Ribulose bisphosphate carboxylase/oxygenase content determined with [14C]carboxypentitol bisphosphate in plants and algae. - Plant Physiol. 77: 735-739, 1985. Go to original source...