Photosynthetica 2020, 58(SI):245-252 | DOI: 10.32615/ps.2019.138

Special issue in honour of Prof. Reto J. Strasser – Photoinhibition of oxygen-evolving complex and photosystem II at chilling stress in the tropical tree species Dalbergia odorifera

Y.-J. YANG1, T. LIU2, S.-B. ZHANG1, W. HUANG1,3
1 Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
2 National and Local Joint Engineering Research Center on Germplasm Utilization and Innovation of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, 650201 Kunming, Yunnan, China
3 Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303 Mengla, Yunnan, China

Photosystem II is sensitive to chilling stress in tropical tree species. However, the underlying mechanism is not clear. In this study, we examined the effects of chilling and light stress on activities of PSII and oxygen-evolving complex (OEC), in order to resolve the controversy of whether chilling-induced PSII photoinhibition is attributed to the excess-energy model or the two-step scheme. We determined changes in chlorophyll a fluorescence transient and energy distribution in PSII during treatment at chilling-light stress for the tropical tree species Dalbergia odorifera. At chilling temperature, the light-use efficiency was largely inhibited. During chilling treatment, the maximum quantum yield of PSII gradually decreased. Meanwhile, the relative fluorescence intensity at K-step (300 μs) significantly increased, indicating the photodamage to OEC. A tightly positive correlation was found between photodamage to OEC and PSII photoinhibition, suggesting that photodamage to OEC was a rate-limiting step for PSII photoinhibition. Furthermore, additional generation of reactive oxygen species did not aggravate PSII photoinhibition at chilling temperature. These results suggest that two-step model is responsible for chilling-induced PSII photoinhibition in the tropical tree species D. odorifera.

Additional key words: chlorophyll fluorescence; JIP-test; low temperature; photosynthesis.

Received: April 25, 2019; Accepted: October 9, 2019; Prepublished online: November 26, 2019; Published: May 28, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
YANG, Y.-J., LIU, T., ZHANG, S.-B., & HUANG, W. (2020). Special issue in honour of Prof. Reto J. Strasser – Photoinhibition of oxygen-evolving complex and photosystem II at chilling stress in the tropical tree species Dalbergia odorifera. Photosynthetica58(SPECIAL ISSUE), 245-252. doi: 10.32615/ps.2019.138
Download citation

References

  1. Allakhverdiev S.I., Murata N.: Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. -BBA-Bioenergetics 1657: 23-32, 2004. Go to original source...
  2. Allakhverdiev S.I., Nishiyama Y., Takahashi S. et al.: Systematic analysis of the relation of electron transport and ATP synthesis to the photodamage and repair of photosystem II in Synechocystis. - Plant Physiol. 137: 263-273, 2005. Go to original source...
  3. Antal T.K., Lo W., Armstrong W.H., Tyystjärvi E.: Illumination with ultraviolet or visible light induces chemical changes in the water-soluble manganese complex, [Mn4O6(bpea)4]Br4. - Photochem. Photobiol. 85: 663-668, 2009. Go to original source...
  4. Barth C., Krause G.H.: Inhibition of photosystems I and II in chilling-sensitive and chilling-tolerant plants under light and low-temperature stress. - Z. Naturforsch. 54: 645-657, 1999. Go to original source...
  5. Busch F., Hunter N.P.A., Ensminger I.: Biochemical constrains limit the potential of the photochemical reflectance index as a predictor of effective quantum efficiency of photosynthesis during the winter spring transition in Jack pine seedlings. - Funct. Plant Biol. 36: 1016-1026, 2009. Go to original source...
  6. Chow W.S., Aro E.M.: Photoinactivation and mechanisms of recovery. - In: Wydrzynski T., Satoh K. (ed.): Photosystem II: The Light-Driven Water: Plastoquinone Oxidoreductase. Advances in Photosynthesis and Respiration. Pp. 627-648. Springer, Dordrecht 2005. Go to original source...
  7. D±browski P., Baczewska A.H., Pawlu¶kiewicz B. et al.: Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. - J. Photoch. Photobio. B 157: 22-31, 2016. Go to original source...
  8. D±browski P., Kalaji M.H., Baczewska A.H. et al.: Delayed chlorophyll a fluorescence, MR 820, and gas exchange changes in perennial ryegrass under salt stress. - J. Lumin. 183: 322-333, 2017. Go to original source...
  9. D±browski P., Pawlu¶kiewicz B., Baczewska A.H. et al.: Chloro-phyll a fluorescence of perennial ryegrass (Lolium perenne L.) varieties under long term exposure to shade. - Zemdirbyste 102: 305-312, 2015. Go to original source...
  10. De Ronde J.A., Cress W.A., Krüger G.H.J. et al.: Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. - J. Plant Physiol. 161: 1211-1224, 2004. Go to original source...
  11. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - BBA-Gen. Subjects 990: 87-92, 1989. Go to original source...
  12. Hakala M., Tuominen I., Keränen M. et al.: Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II. - BBA-Bioenergetics 1706: 68-80, 2005. Go to original source...
  13. Hendrickson L., Furbank R.T., Chow W.S.: A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. - Photosynth. Res. 82: 73-81, 2004. Go to original source...
  14. Huang W., Yang Y.J., Hu H., Zhang S.B.: Moderate photoinhibition of photosystem II protects photosystem I from photodamage at chilling stress in tobacco leaves. - Front. Plant Sci. 7: 182, 2016a. Go to original source...
  15. Huang W., Yang Y.J., Hu H. et al.: Evidence for the role of cyclic electron flow in photoprotection for oxygen-evolving complex. - J. Plant Physiol. 194: 54-60, 2016b. Go to original source...
  16. Huang W., Yang Y.J., Zhang S.B., Liu T.: Cyclic electron flow around photosystem I promotes ATP synthesis possibly helping the rapid repair of photodamaged photosystem II at low light. - Front. Plant Sci. 9: 239, 2018. Go to original source...
  17. Huang W., Zhang S.B., Cao K.F.: The different effects of chilling stress under moderate illumination on photosystem II compared with photosystem I and subsequent recovery in tropical tree species. - Photosynth. Res. 103: 175-182, 2010a. Go to original source...
  18. Huang W., Zhang S.B., Cao K.F.: Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII. - Plant Cell Physiol. 51: 1922-1928, 2010b. Go to original source...
  19. Huang W., Zhang S.B., Cao K.F.: Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature. - Plant Cell Physiol. 52: 297-305, 2011. Go to original source...
  20. Huang W., Zhang S.B., Xu J.C., Liu T.: Plasticity in roles of cyclic electron flow around photosystem I at contrasting temperatures in the chilling-sensitive plant Calotropis gigantea. - Environ. Exp. Bot. 141: 145-153, 2017. Go to original source...
  21. Kalaji H.M., Raèková L., Paganová V. et al.: Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? - Environ. Exp. Bot. 152: 149-157, 2018. Go to original source...
  22. Kramer D.M., Johnson G., Kiirats O., Edwards G.E.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. - Photosynth. Res. 79: 209-218, 2004. Go to original source...
  23. Krieger-Liszkay A., Fufezan C., Trebst A.: Singlet oxygen pro-duction in photosystem II and related protection mechanism. -Photosynth. Res. 98: 551-564, 2008. Go to original source...
  24. Krieger-Liszkay A., Kos P.B., Hideg E.: Superoxide anion radicals generated by methylviologen in photosystem I damage photosystem II. - Physiol. Plantarum 142: 17-25, 2011. Go to original source...
  25. Li P.M., Cheng L.L., Gao H.Y. et al.: Heterogeneous behavior of PSII in soybean (Glycine max) leaves with identical PSII photochemistry efficiency under different high temperature treatments. - J. Plant Physiol. 166: 1607-1615, 2009. Go to original source...
  26. Mathur S., Kalaji H.M., Jajoo A.: Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. - Photosynthetica 54: 185-192, 2016. Go to original source...
  27. Murata N., Allakhverdiev S.I., Nishiyama Y.: The mechanism of photoinhibition in vivo: Re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. - BBA-Bioenergetics 1817: 1127-1133, 2012. Go to original source...
  28. Murata N., Nishiyama Y.: ATP is a driving force in the repair of photosystem II during photoinhibition. - Plant Cell Environ. 41: 285-299, 2018. Go to original source...
  29. Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I.: Photoinhibition of photosystem II under environmental stress. - BBA-Bioenergetics 1767: 414-421, 2007. Go to original source...
  30. Nishiyama Y., Allakhverdiev S.I., Murata N.: Inhibition of the repair of photosystem II by oxidative stress in cyanobacteria. -Photosynth. Res. 84: 1-7, 2005. Go to original source...
  31. Nishiyama Y., Allakhverdiev S.I., Murata N.: A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. - BBA-Bioenergetics 1757: 742-749, 2006. Go to original source...
  32. Nishiyama Y., Allakhverdiev S.I., Murata N.: Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. - Physiol. Plantarum 142: 35-46, 2011. Go to original source...
  33. Nishiyama Y., Allakhverdiev S.I., Yamamoto H. et al.: Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. - Biochemistry 43: 11321-11330, 2004. Go to original source...
  34. Nishiyama Y., Yamamoto H., Allakhverdiev S.I. et al.: Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. - EMBO J. 20: 5587-5594, 2001. Go to original source...
  35. Oguchi R., Terashima I., Kou J., Chow W.S.: Operation of dual mechanisms that both lead to photoinactivation of photo-system II in leaves by visible light. - Physiol. Plantarum 142: 47-55, 2011. Go to original source...
  36. Ohnishi N., Allakhverdiev S.I., Takahashi S. et al.: Two-step mechanism of photodamage to photosystem II: Step one occurs at the oxygen-evolving complex and step two occurs at the photochemical reaction center. - Biochemistry 44: 8494-8499, 2005. Go to original source...
  37. Okada S., Ikeuchi M., Yamamoto N. et al.: Selective and specific cleavage of the D1 and D2 proteins of photosystem II by exposure to singlet oxygen: Factors responsible for the susceptibility to cleavage of the proteins. - BBA-Bioenergetics 1274: 73-79, 1996. Go to original source...
  38. Oxborough K., Baker N.R.: Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components - calculation of qP and Fv'/Fm' without measuring F0'. - Photosynth. Res. 54: 135-142, 1997. Go to original source...
  39. Srivastava A., Guisse B., Greppin H., Strasser R.J.: Regulation of antenna structure and electron transport in PSII of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. - BBA-Bioenergetics 1320: 95-106, 1997. Go to original source...
  40. Strasser B.J.: Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. - Photosynth. Res. 52: 147-155, 1997. Go to original source...
  41. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluores- cence transient as a tool to characterize and screen photosyn-thetic samples. - In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adapta-tion. Pp. 445-483. CRC Press, New York 2000.
  42. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  43. Swoczyna T., Kalaji H.M., Pietkiewicz S. et al.: Photosynthetic apparatus efficiency of eight tree taxa as an indicator of their tolerance to urban environment. - Dendrobiology 63: 65-75, 2010.
  44. Takahashi S., Badger M.R.: Photoprotection in plants: a new light on photosystem II damage. - Trends. Plant Sci. 16: 53-59, 2011. Go to original source...
  45. Takahashi S., Milward S.E., Fan D.Y. et al.: How does cyclic electron flow alleviate photoinhibition in Arabidopsis? - Plant Physiol. 149: 1560-1567, 2009. Go to original source...
  46. Takahashi S., Murata N.: How do environmental stresses accelerate photoinhibition? - Trend Plant Sci. 13: 178-182, 2008. Go to original source...
  47. Telfer A., Dhami S., Bishop S.M. et al.: β-carotene quenches singlet oxygen formed by isolated photosystem II reaction centers. - Biochemistry 33: 14469-14474, 1994. Go to original source...
  48. Tyystjärvi E.: Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster. - Coordin. Chem. Rev. 252: 361-376, 2008. Go to original source...
  49. Vass I.: Role of charge recombination processes in photodamage and photoprotection of the photosystem II complex. - Physiol. Plantarum 142: 6-16, 2011. Go to original source...
  50. Vass I.: Molecular mechanisms of photodamage in the photosystem II complex. - BBA-Bioenergetics 1817: 209-217, 2012. Go to original source...
  51. Vass I., Styring S., Hundal T. et al.: Reversible and irreversible intermediates during photoinhibition of photosystem II: Stable reduced QA species promote chlorophyll triplet formation. - P. Natl. Acad. Sci. USA 89: 1408-1412, 1992. Go to original source...
  52. Yang Y.J., Chang W., Huang W. et al.: The effects of chilling-light stress on photosystems I and II in three Paphiopedilum species. - Bot. Stud. 58: 53, 2017. Go to original source...
  53. Yang Y.J., Zhang S.B., Huang W.: Chloroplastic ATP synthase alleviates photoinhibition of photosystem I in tobacco illuminated at chilling temperature. - Front. Plant Sci. 9: 1648, 2018. Go to original source...
  54. Zavafer A., Cheah M.H., Hillier W. et al.: Photodamage to the oxygen evolving complex of photosystem II by visible light. -Sci. Rep.-UK 5: 16363, 2015. Go to original source...
  55. Zavafer A., Koinuma W., Chow W.S. et al.: Mechanism of photodamage of the oxygen evolving Mn cluster of photo-system II by excessive light energy. - Sci. Rep.-UK 7: 7604, 2017. Go to original source...
  56. Zsiros O., Allakhverdiev S.I., Higashi S. et al.: Very strong UV-A light temporally separates the photoinhibition of photosystem II into light-induced inactivation and repair. - BBA-Bioenergetics 1757: 123-129, 2006. Go to original source...