Photosynthetica 2020, 58(SI):323-330 | DOI: 10.32615/ps.2019.146

Special issue in honour of Prof. Reto J. Strasser – Chlorophyll a fluorescence of Bertholletia excelsa Bonpl. plantations under thinning, liming, and phosphorus fertilization

K.C. PIRES DA COSTA1, R. KIRMAYR JAQUETTI2, J.F. DE CARVALHO GONÇALVES2
1 Faculty of Agronomy, Institute of Studies in Agrarian and Regional Development (IEDAR), Federal University of South and Southeast of Pará (UNIFESSPA), Folha 31, Quadra 07, Nova Marabá, 68507-590 Marabá, PA, Brazil
2 Laboratory of Plant Physiology and Biochemistry, National Institute for Amazonian Research (INPA), André Araújo Ave. 2936, Aleixo, 69011-970 Manaus, AM, Brazil

Phosphorus (P) fertilization and liming can reduce negative effects caused by a sudden increase in light availability after thinning of forest plantations. In this study, immediately after thinning, photochemical performance (quantum yield of PSII and performance index) decreased, however, liming and P fertilization reduced the negative effects caused by thinning and accelerated the recovery of Bertholletia excelsa trees. After thinning, the remaining trees increased J-I phase with the formation of a positive K-band which occurred exclusively in unfertilized (no liming or no P) individuals. Additionally, enhanced effective dissipation (DI0/RC) values (140%) were found in individuals without liming or P after thinning, while plants under liming and P increased DI0/RC values by 47 and 79%, respectively. Photochemical performance of B. excelsa was positively correlated to iron, zinc, and manganese. Thus, P fertilization and liming are recommended for alleviating the stress caused by high irradiance after thinning in B. excelsa plantations.

Additional key words: Brazil nut tree; photosynthetic pigments; plant nutrition; silvicultural practices; stress physiology.

Received: September 21, 2019; Accepted: November 5, 2019; Prepublished online: January 17, 2020; Published: May 28, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
COSTA, K.C.P.D., KIRMAYR JAQUETTI, R., & GONÇALVES, J.F.D.C. (2020). Special issue in honour of Prof. Reto J. Strasser – Chlorophyll a fluorescence of Bertholletia excelsa Bonpl. plantations under thinning, liming, and phosphorus fertilization. Photosynthetica58(SPECIAL ISSUE), 323-330. doi: 10.32615/ps.2019.146
Download citation

References

  1. Arnon D.I.: Copper enzymes in isolated chloroplasts: Polyphenol-oxidase in Beta vulgaris. - Plant Physiol. 24: 1-15, 1949. Go to original source...
  2. Batista I.M.P.: [Liming recommendation for some soils of the State of Amazonas.] Pp. 46. Federal University of Amazonas, Manaus 2014. [In Portuguese]
  3. Boisvert S., Joly D., Carpentier R.: Quantitative analysis of the experimental O-J-I-P chlorophyll fluorescence induction kinetics. Apparent activation energy and origin of each kinetic step. - FEBS J. 273: 4770-4777, 2006. Go to original source...
  4. Bremner J.M., Mulvaney C.S.: Nitrogen - Total. - In: Page A.L., Miller R.H., Keeney D.R. (ed.): Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Pp. 595-624. American Society of Agronomy, Madison 1982. Go to original source...
  5. Carstensen A., Herdean A., Schmidt S.B. et al.: The impacts of phosphorus deficiency on the photosynthetic electron transport chain. - Plant Physiol. 177: 271-284, 2018b. Go to original source...
  6. Carstensen A., Szameitat A.E., Frydenvang J., Husted S.: Chlorophyll a fluorescence analysis can detect phosphorus deficiency under field conditions and is an effective tool to prevent grain yield reductions in spring barley (Hordeum vulgare L.). - Plant Soil 434: 79-91, 2018a. Go to original source...
  7. Cendrero-Mateo M.P., Carmo-Silva C.A., Porcar-Castell A. et al.: Dynamic response of plant chlorophyll fluorescence to light, water and nutrient availability. - Funct. Plant Biol. 42: 746-757, 2015. Go to original source...
  8. CFSEMG: [Recommendations for the use of concealers and fertilizers in Minas Gerais.] Pp. 359. SBCS, Viçosa 1999. [In Portuguese]
  9. Costa K.C.P. [Ecophysiological characteristics and growth of Bertholletia excelsa Bonpl. in forest planting submitted to thinning.] Pp. 49. National Institute of Amazonian Research, Manaus 2015. [In Portuguese]
  10. Croft H., Chen J.M.: Leaf Pigment Content. Pp. 117-142. Elsevier, Toronto 2017. Go to original source...
  11. Derks A., Schaven K., Bruce D.: Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. - BBA-Bioenergetics 1847: 468-485, 2015. Go to original source...
  12. dos Santos Junior U.M., Gonçalves J.F.C., Strasser R.J., Fearnside P.M.: Flooding of tropical forests in central Amazonia: What do the effects on the photosynthetic apparatus of trees tell us about species suitability for reforestation in extreme environments created by hydroelectric dams? - Acta Physiol. Plant. 37: 166, 2015.
  13. Ferreira M.J., Gonçalves J.F.C., Ferraz J.B.S.: Photosynthetic parameters of young Brazil nut (Bertholletia excelsa H. B.) plants subjected to fertilization in a degraded area in Central Amazonia. - Photosynthetica 47: 616-620, 2009. Go to original source...
  14. Ferreira M.J., Gonc±lves J.F.C., Ferraz J.B.S., Correâ V.M.: [Nutritional characteristics of young plants of Bertholletia excelsa Bonpl. under fertilization treatments in a degraded area in the Amazon.] - Sci. For. 43: 863-872, 2015. [In Portuguese] Go to original source...
  15. Filstrup C.T., Downing J.A.: Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes. - Inland Waters 7: 385-400, 2017. Go to original source...
  16. Forrester D.I., Elms S.R., Baker T.G.: Relative, but not absolute, thinning responses decline with increasing thinning age in a Eucalyptus nitens plantation. - Aust. Forestry 76: 121-127, 2013. Go to original source...
  17. Frydenvang J., van Maarschalkerweerd M., Carstensen A. et al.: Sensitive detection of phosphorus deficiency in plants using chlorophyll a fluorescence. - Plant Physiol. 169: 353-360, 2015. Go to original source...
  18. Gururani A.M., Venkatesh J., Tran L.-S.P.: Regulation of photosynthesis during abiotic stress-induced photoinhibition. - Mol. Plant 8: 1304-1320, 2015. Go to original source...
  19. Hendry G.A.S., Price A.H.: Stress indicators: Chlorophylls and carotenoids. - In: Hendry G.A.S., Grime J.P. (ed.): Methods in Comparative Plant Ecology. Pp. 148-152. Chapman & Hall, London 1993. Go to original source...
  20. Hernández I., Munné-Bosch S.: Linking phosphorus availability with photo-oxidative stress in plants. - J. Exp. Bot. 66: 2889-2900, 2015. Go to original source...
  21. INMET.: National Institute of Meteorology. Available at: http://www.inmet.gov.br/portal/. (Accessed on 23 December 2018)
  22. Kalaji H.M., B±ba W., Gediga K. et al.: Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. - Photosynth. Res. 136: 329-343, 2017. Go to original source...
  23. Kalaji H.M., Carpentier R., Allakhverdiev S.I., Bosa K.: Fluorescence parameters as early indicators of light stress in barley. - J. Photoch. Photobio. B 112: 1-6, 2012. Go to original source...
  24. Lopes J.D.S., Costa K.C.P., Fernandes V.S., Gonçalves J.F.C.: Functional traits associated to photosynthetic plasticity of young Brazil nut (Bertholletia excelsa) plants. - Flora 258: 151446, 2019. Go to original source...
  25. Luo H.-H., Tsimilli-Michael M., Zhang Y.-L., Zhang W.-F.: Combining gas exchange and chlorophyll a fluorescence measurements to analyze the photosynthetic activity of drip-irrigated cotton under different soil water deficits. - J. Integr. Agr. 15: 1256-1266, 2016. Go to original source...
  26. Ma X., Song L., Yu W. et al.: Growth, physiological, and biochemical responses of Camptotheca acuminata seedlings to different light environments. - Front. Plant Sci. 6: 321, 2015. Go to original source...
  27. Miyazawa M., Paiva M.A., Muraoka T. et al.: [Chemical Analysis Manual for Soils, Plants and Fertilizers.] Pp. 172-223. Embrapa Solos, Brasília 1999. [In Portuguese]
  28. Rout G.R., Sahoo S.: Role of iron in plant growth and metabolism. - Rev. Agr. Sci. 3: 1-24, 2015. Go to original source...
  29. Schimpl F.C., Ferreira M.J., Jaquetti R.K. et al.: Physiological responses of young Brazil nut (Bertholletia excelsa) plants to drought stress and subsequent rewatering. - Flora 252: 10-17, 2019. Go to original source...
  30. Schroth G., Mota M.S., Elias M.E.A.: Growth and nutrient accumulation of Brazil nut trees (Bertholletia excelsa) in agroforestry at different fertilizer levels. - J. Forestry Res. 26: 347-353, 2015. Go to original source...
  31. Scoles R., Gribel R., Klein G.N.: [Growth and survival of Brazil nuts (Bertholletia excelsa Bonpl.), in different environmental conditions in region River Trombetas, Oriximiná, Pará, Brazil.] - Bol. Mus. Para. Emilio Goeldi. Cienc. Nat. 6: 273-293, 2011. [In Portuguese] Go to original source...
  32. Scoles R., Klein G.N., Gribel R.: [Performance and survival of Brazil nut tree (Bertholletia excelsa Bonpl., Lecythidaceae), in different light conditions after six years to planting, in Trombetas River region, Oriximiná, Pará, Brazil.] - Bol. Mus. Para. Emílio Goeldi. Cienc. Nat. 9: 321-336, 2014. [In Portuguese] Go to original source...
  33. Sengupta D., Guha A., Reddy A.R.: Interdependence of plant water status with photosynthetic performance and root defense responses in Vigna radiata (L.) Wilczek under progressive drought stress and recovery. - J. Photoch. Photobio. B 127: 170-181, 2013. Go to original source...
  34. Souza G.M., Sato A.M., Ribeiro R.V., Prado C.H.B.A.: Photosynthetic responses of four tropical tree species grown under gap and understorey conditions in a semi-deciduous forest. - Braz. J. Bot. 33: 529-538, 2010. Go to original source...
  35. Stirbet A., Govindjee: Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. - Photosynth. Res. 113: 15-61, 2012. Go to original source...
  36. Strasser B.J.: Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. - Photosynth. Res. 52: 147-155, 1997. Go to original source...
  37. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  38. Sudmeyer R.A., Speijers J., Nicholas B.D.: Root distribution of Pinus pinaster, P. radiata, Eucalyptus globulus and E. kochii and associated soil chemistry in agricultural land adjacent to tree lines. - Tree Physiol. 24: 1333-1346, 2004. Go to original source...
  39. Tariq A., Pan K., Olatunji O.A. et al.: Phosphorous application improves drought tolerance of Phoebe zhennan. - Front. Plant Sci. 8: 1561, 2017. Go to original source...
  40. Vesala T., Suni T., Rannik Ü. et al.: Effect of thinning on surface fluxes in a boreal forest. - Global Biogeochem. Cy. 19: 303-311, 2005. Go to original source...
  41. Wu J.W., Su Y., Wang J.H. et al.: Morphological and physiological acclimation of Catalpa bungei plantlets to different light conditions. - Photosynthetica 56: 537-548, 2018. Go to original source...
  42. ®ivèák M., Brestiè M., Kalaji H.M., Govindjee: Photosynthetic responses of sun- and shade-grown barley leaves to high light: Is the lower PSII connectivity in shade leaves associated with protection against excess of light? - Photosynth. Res. 119: 339-354, 2014. Go to original source...