Photosynthetica 2020, 58(3):799-807 | DOI: 10.32615/ps.2020.017

Can anthocyanin presence ameliorate the photosynthetic performance of Prunus saplings subjected to polyethylene glycol-simulated water stress?

E. LO PICCOLO1, M. LANDI1,2, T. GIORDANI1, G. LORENZINI1,2, F. MALORGIO1, R. MASSAI1, C. NALI1,2, E. PELLEGRINI1,2, G. RALLO1, D. REMORINI1, P. VERNIERI1,2, L. GUIDI1,2
1 Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
2 CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy

The aim was the evaluation of the biochemical and physiological responses of green- (GP) and red-leafed (RP) Prunus cerasifera mature leaves to 20 d of polyethylene glycol (PEG 6000)-induced water stress in order to elucidate a possible ameliorative role exerted by anthocyanins. At 10 d, the anthocyanin content remained unchanged in RP water-stressed leaves. Photosynthetic rate was lower in GP than that of RP (83.4 vs. 76.5%, respectively), paralleled by a higher degree of photoinhibition (Fv/Fm) in GP leaves. Leaves of GP accounted for higher content of soluble sugars at 10 d, when RP only showed a slight sucrose increase. At 20 d of stress, both morphs recovered their Fv/Fm values, suggesting the ability of both genotypes to adjust their photosynthetic metabolism under conditions of water stress. In conclusion, besides the sunscreen role served by anthocyanins, the carbon sink by these flavonoids might have further prevented sugar accumulation and the consequent sugar-promoted feedback regulation of photosynthesis in drought-stressed red leaves.

Additional key words: chlorophyll a fluorescence; drought; photosystem II; sugar metabolism.

Received: December 17, 2019; Revised: February 4, 2020; Accepted: February 17, 2020; Prepublished online: May 15, 2020; Published: June 11, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
LO PICCOLO, E., LANDI, M., GIORDANI, T., LORENZINI, G., MALORGIO, F., MASSAI, R., ... GUIDI, L. (2020). Can anthocyanin presence ameliorate the photosynthetic performance of Prunus saplings subjected to polyethylene glycol-simulated water stress? Photosynthetica58(3), 799-807. doi: 10.32615/ps.2020.017
Download citation

References

  1. Adams III. W.W., Muller O., Cohu C.M., Demmig-Adams B.: May photoinhibition be a consequence, rather than a cause, of limited plant productivity? - Photosynth. Res. 117: 31-44, 2013. Go to original source...
  2. Bieleski R., Redgwell R.: Sorbitol metabolism in nectaries from flowers of Rosaceae. - Funct. Plant Biol. 7: 15, 1980. Go to original source...
  3. Bilger W., Björkman O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. - Photosynth. Res. 25: 173-185, 1990. Go to original source...
  4. Chalker-Scott L.: Environmental significance of anthocyanins in plant stress responses. - Photochem. Photobiol. 70: 1-9, 1999. Go to original source...
  5. Dai A.: Drought under global warming: a review. - Wiley Interdiscip. Rev. Clim. Change 2: 45-65, 2011. Go to original source...
  6. Dai A.: Increasing drought under global warming in observations and models. - Nat. Clim. Change 3: 52-58, 2013. Go to original source...
  7. Das P.K., Shin D.H., Choi S.-B., Y.I. Park: Sugar-hormone cross-talk in anthocyanin biosynthesis. - Mol. Cells 34: 501-507, 2012. Go to original source...
  8. Escobar-Gutiérrez A.J., Zipperlin B., Carbonne F. et al.: Photo-synthesis, carbon partitioning and metabolite content during drought stress in peach seedlings. - Funct. Plant Biol. 25: 197-205, 1998. Go to original source...
  9. Eveland A.L., Jackson D.P.: Sugars, signalling, and plant development. - J. Exp. Bot. 63: 3367-3377, 2012. Go to original source...
  10. Fang Y., Xiong L.: General mechanisms of drought response and their application in drought resistance improvement in plants. - Cell. Mol. Life Sci. 72: 673-689, 2015. Go to original source...
  11. Flexas J., Diaz-Espejo A.: Interspecific differences in temperature response of mesophyll conductance: food for thought on its origin and regulation. - Plant Cell Environ. 38: 625-628, 2015. Go to original source...
  12. Foyer C.H.: Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. - Environ. Exp. Bot. 154: 134-142, 2018. Go to original source...
  13. Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - BBA-Gen. Subjects 990: 87-92, 1989. Go to original source...
  14. Gould K.S.: Nature's swiss army knife: The diverse protective roles of anthocyanins in leaves. - J. Biomed. Biotechnol. 2004: 314-320, 2004. Go to original source...
  15. Gould K.S., Jay-Allemand C., Logan B.A. et al.: When are foliar anthocyanins useful to plants? Re-evaluation of the photoprotection hypothesis using Arabidopsis thaliana mutants that differ in anthocyanin accumulation. - Environ. Exp. Bot. 154: 11-22, 2018. Go to original source...
  16. Govindjee: Chlorophyll a fluorescence: A bit of basics and history. - In: Papageorgiou G.C., Govindjee (ed.): Chloro-phyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 1-41. Springer, Dordrecht 2004. Go to original source...
  17. Grimm N.B., Faeth S.H., Golubiewski N.E. et al.: Global change and the ecology of cities. - Science 319: 756-760, 2008. Go to original source...
  18. Harborne J.B.: Spectral methods of characterizing anthocyanins. -Biochem. J. 70: 22-28, 1958. Go to original source...
  19. Hatier J.-H.B., Clearwater M.J., Gould K.S.: The functional significance of black-pigmented leaves: Photosynthesis, photoprotection and productivity in Ophiopogon planiscapus 'Nigrescens'. - PLoS ONE 8: e67850, 2013. Go to original source...
  20. Hendrickson L., Furbank R.T., Chow W.S.: A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. - Photosynth. Res. 82: 73-81, 2004. Go to original source...
  21. Hughes N.M., Burkey K.O., Cavender-Bares J., Smith W.K.: Xanthophyll cycle pigment and antioxidant profiles of winter-red (anthocyanic) and winter-green (acyanic) angiosperm evergreen species. - J. Exp. Bot. 63: 1895-1905, 2012. Go to original source...
  22. Hughes N.M., Carpenter K.L., Keidel T.S. et al.: Photosynthetic costs and benefits of abaxial versus adaxial anthocyanins in Colocasia esculenta 'Mojito'. - Planta 240: 971-981, 2014. Go to original source...
  23. Hughes N.M., Morley C.B., Smith W.K.: Coordination of anthocyanin decline and photosynthetic maturation in juvenile leaves of three deciduous tree species. - New Phytol. 175: 675-685, 2007. Go to original source...
  24. Hughes N.M., Neufeld H.S., Burkey K.O.: Functional role of anthocyanins in high-light winter leaves of the evergreen herb Galax urceolata. - New Phytol. 168: 575-587, 2005. Go to original source...
  25. Jiménez S., Dridi J., Gutiérrez D. et al.: Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. - Tree Physiol. 33: 1061-1075, 2013. Go to original source...
  26. Karageorgou P., Manetas Y.: The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light. - Tree Physiol. 26: 613-621, 2006. Go to original source...
  27. Klughammer C., Schreiber U.: Complementary PS II quantum yields calculated from simple fluorescence parameters mea-sured by PAM fluorometry and the Saturation Pulse method. -PAM Appl. Notes 1: 27-35, 2008.
  28. Krapp A., Stitt M.: An evaluation of direct and indirect mechanisms for the ʻsink-regulationʼ of photosynthesis in spinach: Changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript levels after cold-girdling source leaves. - Planta 195: 313-325, 1995. Go to original source...
  29. Kyparissis A., Grammatikopoulos G., Manetas Y.: Leaf morpholo-gical and physiological adjustments to the spectrally selective shade imposed by anthocyanins in Prunus cerasifera. - Tree Physiol. 27: 849-857, 2007. Go to original source...
  30. Landi M., Guidi L., Pardossi A. et al.: Photoprotection by foliar anthocyanins mitigates effects of boron toxicity in sweet basil (Ocimum basilicum). - Planta 240: 941-953, 2014. Go to original source...
  31. Landi M., Pardossi A., Remorini D., Guidi L.: Antioxidant and photosynthetic response of a purple-leaved and a green-leaved cultivar of sweet basil (Ocimum basilicum) to boron excess. - Environ. Exp. Bot. 85: 64-75, 2013. Go to original source...
  32. Landi M., Tattini M., Gould K.S.: Multiple functional roles of anthocyanins in plant-environment interactions. - Environ. Exp. Bot. 119: 4-17, 2015. Go to original source...
  33. Lo Bianco R., Rieger M., Sung S.-J.S.: Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. - Physiol. Plantarum 108: 71-78, 2000. Go to original source...
  34. Lo Piccolo E., Landi M., Pellegrini E. et al.: Multiple consequences induced by epidermally-located anthocyanins in young, mature and senescent leaves of Prunus. - Front. Plant Sci. 9: 917, 2018. Go to original source...
  35. Manetas Y., Drinia A., Petropoulou Y.: High contents of anthocyanins in young leaves are correlated with low pools of xanthophyll cycle components and low risk of photoinhibi-tion. - Photosynthetica 40: 349-354, 2002. Go to original source...
  36. Manetas Y., Petropoulou Y., Psaras G.K., Drinia A.: Exposed red (anthocyanic) leaves of Quercus coccifera display shade characteristics. - Funct. Plant Biol. 30: 265-270, 2003. Go to original source...
  37. Manzoni S., Vico G., Katul G. et al.: Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. - Funct. Ecol. 25: 456-467, 2011. Go to original source...
  38. McCarthy H.R., Pataki D.E., Jenerette G.D.: Plant water-use efficiency as a metric of urban ecosystem services. - Ecol. Appl. 21: 3115-3127, 2011. Go to original source...
  39. Medrano H., Tomás M., Martorell S. et al.: From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. - Crop J. 3: 220-228, 2015. Go to original source...
  40. Mellisho C.D., Cruz Z.N., Conejero W. et al.: Mechanisms for drought resistance in early maturing cvar Flordastar peach trees. - J. Agr. Sci. 149: 609-616, 2011. Go to original source...
  41. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being: Synthesis. Pp. 155. Island Press, Washington 2005.
  42. Moustaka J., Panteris E., Adamakis I.-D.S. et al.: High antho-cyanin accumulation in poinsettia leaves is accompanied by thylakoid membrane unstacking, acting as a photoprotective mechanism, to prevent ROS formation. - Environ. Exp. Bot. 154: 44-55, 2018. Go to original source...
  43. Napoli M., Massetti L., Brandani G. et al.: Modeling tree shade effect on urban ground surface temperature. - J. Environ. Qual. 45: 146-156, 2016. Go to original source...
  44. Núñez-Florez R., Pérez-Gómez U., Fernández-Méndez F.: Functional diversity criteria for selecting urban trees. - Urban For. Urban Gree. 38: 251-266, 2019. Go to original source...
  45. Pauleit S.: Urban street tree plantings: identifying the key requirements. - Proc. Inst. Civ. Eng.: Munic. Eng. 156: 43-50, 2003. Go to original source...
  46. Pérez-Jiménez M., Hernández-Munuera M., Piñero Zapata M.C. et al.: Two minuses can make a plus: waterlogging and elevated CO2 interactions in sweet cherry (Prunus avium) cultivars. - Physiol. Plantarum 161: 257-272, 2017. Go to original source...
  47. Pinheiro C., Chaves M.M.: Photosynthesis and drought: Can we make metabolic connections from available data? - J. Exp. Bot. 62: 869-882, 2011. Go to original source...
  48. Pinheiro C., Chaves M.M., Ricardo C.P.: Alterations in carbon and nitrogen metabolism induced by water deficit in the stems and leaves of Lupinus albus L. - J. Exp. Bot. 52: 1063-1070, 2001. Go to original source...
  49. Ranney T.G., Bassuk N.L., Whitlow T.H.: Osmotic adjustment and solute constituents in leaves and roots of water-stressed cherry (Prunus) trees. - J. Am. Soc. Hortic. Sci. 116: 684-688, 1991. Go to original source...
  50. Rieger M., Lo Bianco R., Okie W.R.: Responses of Prunus ferganensis, Prunus persica and two interspecific hybrids to moderate drought stress. - Tree Physiol. 23: 51-58, 2003. Go to original source...
  51. Ruban A.V.: Nonphotochemical chlorophyll fluorescence quenching: Mechanism and effectiveness in protecting plants from photodamage. - Plant Physiol. 170: 1903-1916, 2016. Go to original source...
  52. Singh S.K., Reddy K.R.: Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought. - J. Photoch. Photobio. B 105: 40-50, 2011. Go to original source...
  53. Sjöman H., Hirons A.D., Bassuk N.L.: Improving confidence in tree species selection for challenging urban sites: a role for leaf turgor loss. - Urban Ecosyst. 21: 1171-1188, 2018. Go to original source...
  54. Solfanelli C., Poggi A., Loreti E. et al.: Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. - Plant Physiol. 140: 637-646, 2006. Go to original source...
  55. Sotelo P., Pérez E., Najar-Rodriguez A. et al.: Brassica plant responses to mild herbivore stress elicited by two specialist insects from different feeding guilds. - J. Chem. Ecol. 40: 136-149, 2014. Go to original source...
  56. Steyn W.J., Wand S.J.E., Holcroft D.M., Jacobs G.: Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. - New Phytol. 155: 349-361, 2002. Go to original source...
  57. Tattini M., Sebastiani F., Brunetti C. et al.: Dissecting molecular and physiological response mechanisms to high solar radiation in cyanic and acyanic leaves: a case study on red and green basil. - J. Exp. Bot. 68: 2425-2437, 2017. Go to original source...
  58. Turner-Skoff J., Cavender N.: The benefits of trees for livable and sustainable communities. - Plants People Planet 1: 323-335, 2019. Go to original source...
  59. Tyrväinen L., Pauleit S., Seeland K., de Vries S.: Benefits and uses of urban forests and trees. - In: Konijnendijk C., Nilsson K., Randrup T., Schipperijn J. (ed.): Urban Forests and Trees. Pp. 81-114. Springer, Berlin-Heidelberg 2005. Go to original source...
  60. Wang Z., Stutte G.W.: The role of carbohydrates in active osmotic adjustment in apple under water stress. - J. Am. Soc. Hortic. Sci. 117: 816-823, 1992. Go to original source...
  61. Winefield C., Davies K., Gould K. (ed.): Anthocyanins: Biosynthesis, Functions, and Applications. Pp. 336. Springer, New York 2009. Go to original source...
  62. Yusof N.L., Rasmusson A.G., Gómez Galindo F.: Reduction of the nitrate content in baby spinach leaves by vacuum impregnation with sucrose. - Food Bioprocess Tech. 9: 1358-1366, 2016. Go to original source...
  63. Zhang K.-M., Yu H.-J., Shi K. et al.: Photoprotective roles of anthocyanins in Begonia semperflorens. - Plant Sci. 179: 202-208, 2010. Go to original source...