Photosynthetica 2020, 58(3):836-845 | DOI: 10.32615/ps.2020.010

Leaf gas exchange, oxidative stress, and physiological attributes of rapeseed (Brassica napus L.) grown under different light-emitting diodes

M.H. SALEEM1,†, M. REHMAN2,†, S. FAHAD3, S.A. TUNG5, N. IQBAL6, A. HASSAN6, A. AYUB6, M.A. WAHID5, S. SHAUKAT7, L. LIU1, G. DENG2
1 MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
2 School of Agriculture, Yunnan University, 650504 Kunming, China
3 Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
5 Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
6 Department of Botany, Government College University, Faisalabad, Pakistan
7 Deapartment of Plant Breeding and Genetics, College of Agriculture, University of Sargodha, Sargodha, Pakistan

Through its impact on morphogenesis, light is the key environmental factor that alters plant structural development; however, the understanding how light controls plant growth and developmental processes is still poor and needs further research. For this purpose, a Petri dish and pot experiment was conducted to investigate the effects of different LEDs, i.e., white light (WL), red light (RL), blue light (BL), and orange light (OL) on morphology, gas-exchange parameters, and antioxidant capacity of Brassica napus. Compared with WL, RL significantly promoted plant growth and biomass, contents of photosynthetic pigments, and gas-exchange parameters in comparison to BL and OL. However, RL also helped decline malondialdehyde and proline contents and superoxide anion and peroxide production rate. In contrast, BL and OL significantly reduced plant growth and biomass, gas-exchange attributes and increased the activities of superoxide dismutase and peroxidase in Petri dish as well as in pot experiment. These results suggest that red light could improve plant growth in B. napus plants through activating gas-exchange attributes, reduce reactive oxygen species accumulation, and promote antioxidant capacity.

Additional key words: antioxidative enzymes; light quality; photosynthesis.

Received: September 22, 2019; Revised: December 25, 2019; Accepted: January 22, 2020; Prepublished online: May 25, 2020; Published: June 11, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
SALEEM, M.H., REHMAN, M., FAHAD, S., TUNG, S.A., IQBAL, N., HASSAN, A., ... DENG, G. (2020). Leaf gas exchange, oxidative stress, and physiological attributes of rapeseed (Brassica napus L.) grown under different light-emitting diodes. Photosynthetica58(3), 836-845. doi: 10.32615/ps.2020.010
Download citation

References

  1. Arnon D.T.: Copper enzyme in isolated chloroplasts. Polyphe-noloxidase in Beta vulgaris. - Plant Physiol. 24: 1-15, 1949. Go to original source...
  2. Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water-stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  3. Bourget C.M.: An introduction to light-emitting diodes. - HortScience 43: 1944-1946, 2008. Go to original source...
  4. Chang S., Li C., Yao X. et al.: Morphological, photosynthetic, and physiological responses of rapeseed leaf to different combinations of red and blue lights at the rosette stage. - Front. Plant Sci. 7: 1144, 2016. Go to original source...
  5. Chen C.N., Pan S.M.: Assay of superoxide dismutase activity by combining electrophoresis and densitometry. - Bot. Bull. Acad. Sin. 37: 107-111, 1996.
  6. Chen X.L., Guo W.Z., Xue X.Z. et al.: Growth and quality responses of 'Green Oak Leaf' lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). - Sci. Hortic.-Amsterdam 172: 168-175, 2014. Go to original source...
  7. Cope K.R., Bugbee B.: Spectral effects of three types of white light-emitting diodes on plant growth and development: absolute versus relative amounts of blue. - HortScience 48: 504-509, 2013. Go to original source...
  8. Dutta Gupta S., Jatothu B.: Fundamentals and applications of light emitting diodes (LEDs) in in vitro plant growth and morphogenesis. - Plant Biotechnol. Rep. 7: 211-220, 2013. Go to original source...
  9. Evans P., Halliwell B.: Micronutrients: oxidant/antioxidant status. - Brit. J. Nutr. 85: 67-74, 2001. Go to original source...
  10. Fahad S., Bajwa A.A., Nazir U. et al.: Crop production under drought and heat stress: Plant responses and management options. - Front. Plant Sci. 8: 1147, 2017. Go to original source...
  11. Fahad S., Bano A.: Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. - Pak. J. Bot. 44: 1433-1438, 2012.
  12. Fahad S., Chen Y., Saud S. et al.: Ultraviolet radiation effect on photosynthetic pigments, biochemical attributes, antioxidant enzyme activity and hormonal contents of wheat. - J. Food Agric. Environ. 11: 1635-1641, 2013.
  13. Fahad S., Hussain S., Bano A. et al.: Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. - Environ. Sci. Pollut. R. 22: 4907-4921, 2014a. Go to original source...
  14. Fahad S., Hussain S., Matloob A. et al.: Phytohormones and plant responses to salinity stress: a review. - Plant Growth Regul. 75: 391-404, 2014b. Go to original source...
  15. Fahad S., Hussain S., Saud S. et al.: A biochar application protects rice pollen from high-temperature stress. - Plant Physiol. Bioch. 96: 281-287, 2015a. Go to original source...
  16. Fahad S., Hussain S., Saud S. et al.: Exogenously applied plant growth regulators enhance the morphophysiological growth and yield of rice under high temperature. - Front. Plant Sci. 7: 1250, 2016c. Go to original source...
  17. Fahad S., Hussain S., Saud S. et al.: Responses of rapid visco-analyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures. - PLoS ONE 11: e0159590, 2016a. Go to original source...
  18. Fahad S., Hussain S., Saud S. et al.: Exogenously applied plant growth regulators affect heat-stressed rice pollens. - J. Agron. Crop Sci. 202: 139-150, 2016b. Go to original source...
  19. Fahad S., Hussain S., Saud S. et al.: Exogenously applied plant growth regulators enhance the morphophysiological growth and yield of rice under high temperature. - Front. Plant Sci. 7: 1250, 2016c. Go to original source...
  20. Fahad S., Hussain S., Saud S. et al.: A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. - Plant Physiol. Bioch. 103: 191-198, 2016d. Go to original source...
  21. Fahad S., Muhammad Z.I., Abdul K. et al.: Consequences of high temperature under changing climate optima for rice pollen characteristics - concepts and perspectives. - Arch. Agron. Soil Sci. 64: 1473-1488, 2018. Go to original source...
  22. Fahad S., Nie L., Chen Y. et al.: Crop plant hormones and environmental stress. - Sustain Agr. Rev. 15: 371-400. 2015b. Go to original source...
  23. Fan X.X., Xu Z.G., Liu X.Y. et al.: Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. - Sci. Hortic.-Amsterdam 153: 50-55, 2013. Go to original source...
  24. FAOSTAT: Brassica napus. Available at: http://www.faostat.fao.org, 2013.
  25. Fukuda N., Fujita M., Ohta Y. et al.: Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. - Sci. Hortic.-Amsterdam 115: 176-182, 2008. Go to original source...
  26. Godo T., Fujiwara K., Guan K., Miyoshi et al.: Effects of wave-length of LED-light on in vitro asymbiotic germination and seedling growth of Bletilla ochracea Schltr. (Orchidaceae). - Plant Biotechnol. 28: 397-400, 2011. Go to original source...
  27. Haliapas S., Yupsanis T.A., Syros T.D. et al.: Petunia × hybrida during transition to flowering as affected by light intensity and quality treatments. - Acta Physiol. Plant. 30: 807-815, 2008. Go to original source...
  28. Halliwell B., Gutteridge J.M.C.: Free Radicals in Biology and Medicine. Pp. 888. Oxford University Press, New York 2007.
  29. Heath R.L., Packer L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. - Arch. Biochem. Biophys. 125: 180-198, 1968. Go to original source...
  30. Hernández R., Kubota C.: Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. - Environ. Exp. Bot. 12: 66-74, 2016. Go to original source...
  31. Hogewoning S.W., Maljaars H., Harbinson J.: The acclimation of photosynthesis in cucumber leaves to different ratios of red and blue light. - Photosynth. Res. 91: 287-288, 2007.
  32. Imran M., Sun X., Hussain S. et al.: Molybdenum-induced effects on nitrogen metabolism enzymes and elemental profile of winter wheat (Triticum aestivum L.) under different nitrogen sources. - Int. J. Mol. Sci. 20: 3009, 2019. Go to original source...
  33. Janda T., Majláth I., Szalai G.: Interaction of temperature and light in the development of freezing tolerance in plants. - J. Plant Growth Regul. 30: 460-469, 2014. Go to original source...
  34. Kami C., Lorrain S., Homitschek P., Fankhauser C.: Light regulated plant growth and development. - Curr. Top. Dev. Biol. 91: 29-66, 2010. Go to original source...
  35. Kamran M., Malik Z., Parveen A. et al.: Biochar alleviates Cd phytotoxicity by minimizing bioavailability and oxidative stress in pak choi (Brassica chinensis L.) cultivated in Cd-polluted soil. - J. Environ. Manage. 250: 109500, 2019. Go to original source...
  36. Kamran M., Malik Z., Parveen A. et al.: Ameliorative effects of biochar on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. - J. Plant Growth Regul. 39: 266-281, 2020a. Go to original source...
  37. Kamran M., Parveen A., Ahmar S. et al.: An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. - Int. J. Mol. Sci. 21: 148, 2020b. Go to original source...
  38. Khan M.N., Zhang J., Luo T. et al.: Morpho-physiological and biochemical responses of tolerant and sensitive rapeseed cultivars to drought stress during early seedling growth stage. - Acta Physiol. Plant. 41: 25, 2019. Go to original source...
  39. Kim S.J., Hahn E.J., Heo J.W., Paek K.Y.: Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. - Sci. Hortic.-Amsterdam 101: 143-151, 2004. Go to original source...
  40. Kobayashi K., Amore T., Lazaro M.: Light-Emitting Diodes (LEDs) for miniature hydroponic lettuce. - Opt. Photon. J. 3: 74-77, 2013. Go to original source...
  41. Lee S.C., Kim J.H., Jeong S.M. et al.: Effect of far-infrared radiation on the antioxidant activity of rice hulls. - J. Agr. Food Chem. 51: 4400-4403, 2003. Go to original source...
  42. Lee S.W., Seo J.M., Lee M.K. et al.: Influence of different LED lamps on the production of phenolic compounds in common and Tartary buckwheat sprouts. - Ind. Crop Prod. 54: 320-326, 2014. Go to original source...
  43. Li Z., Wu B.J., Lu G.Y. et al.: Differences in physiological responses of Brassica napus genotypes under water stress during seedling stage. - Chin. J. Oil Crop Sci. 34: 033-039, 2012.
  44. Ma G., Zhang L., Kato M. et al.: Effect of the combination of ethylene and red LED light irradiation on carotenoid accumulation and carotenogenic gene expression in the flavedo of citrus fruit. - Postharvest Biol. Tec. 99: 99-104, 2015b. Go to original source...
  45. Ma X.H. Song L.L., Yu W.W. et al.: Growth, physiological, and biochemical responses of Camptotheca acuminata seedlings to different light environments. - Front. Plant Sci. 6: 321, 2015a. Go to original source...
  46. Mastropasqua L., Borraccino G., Bianco L., Paciolla C.: Light qualities and dose influence ascorbate pool size in detached oat leaves. - Plant Sci. 183: 57-64, 2012. Go to original source...
  47. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  48. Morrow R.C.: LED lighting in horticulture. - HortScience 43: 1947-1950, 2008. Go to original source...
  49. Nanya K., Ishigami Y., Hikosaka S., Goto E.: Effects of blue and red light on stem elongation and flowering of tomato seedlings. - Acta Hortic. 956: 261-266, 2012. Go to original source...
  50. Quartacci M.F., Ranier A., Sgherri C.: Antioxidative defense mechanisms in two grapevine (Vitis vinifera L.) cultivars grown under boron excess in the irrigation water. - Vitis 54: 51-58, 2015.
  51. Rana M.S., Bhantana P., Sun X-C. et al.: Molybdenum as an essential element for crops: An overview. - Int. J. Sci. Res. Growth 24: 2020. Go to original source...
  52. Rehman M., Liu L., Bashir S. et al.: Influence of rice straw biochar on growth, antioxidant capacity and copper uptake in ramie (Boehmeria nivea L.) grown as forage in aged copper-contaminated soil. - Plant Physiol. Bioch. 138: 121-129, 2019a. Go to original source...
  53. Rehman M., Liu L., Wang Q. et al.: Copper environmental toxicology, recent advances, and future outlook: a review. - Environ. Sci. Pollut. R. 26: 18003-18016, 2019b. Go to original source...
  54. Rehman M., Maqbool Z., Peng D., Liu L.: Morpho-physiological traits, antioxidant capacity and phytoextraction of copper by ramie (Boehmeria nivea L.) grown as fodder in copper-contaminated soil. - Environ. Sci. Pollut. R. 26: 5851-5861, 2019c. Go to original source...
  55. Rehman M., Ullah S., Bao Y. et al.: Light-emitting diodes: whether an efficient source of light for indoor plants? - Environ. Sci. Pollut. R. 24: 24743-24752, 2017. Go to original source...
  56. Rizwan M., Ali S., Adrees M. et al.: Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. - Environ. Sci. Pollut. R. 23: 17859-17879, 2016. Go to original source...
  57. Sakharov I.Y., Aridilla G.B.: Variation of peroxidase activity in cacao beans during their ripening, fermentation and drying. - Food Chem. 65: 51-54, 1999. Go to original source...
  58. Saleem M.H., Ali S., Rehman M. et al.: Influence of phosphorus on copper phytoextraction via modulating cellular organelles in two jute (Corchorus capsularis L.) varieties grown in a copper mining soil of Hubei Province, China. - Chemosphere 248: 126032, 2020e. Go to original source...
  59. Saleem M.H., Ali S., Rehman M. et al.: Jute: A potential candidate for phytoremediation of metals - A review. - Plants-Basel 9: 258, 2020f. Go to original source...
  60. Saleem M.H., Ali S., Seleiman M.F. et al.: Assessing the correlations between different traits in copper-sensitive and copper-resistant varieties of jute (Corchorus capsularis L.). - Plants-Basel 8: 545, 2019a. Go to original source...
  61. Saleem M.H., Fahad S., Khan S.U. et al.: Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. - Environ. Sci. Pollut. R. 27: 5211-5221, 2020c. Go to original source...
  62. Saleem M.H., Fahad S., Khan S.U. et al.: Morpho-physiological traits, gaseous exchange attributes, and phytoremediation potential of jute (Corchorus capsularis L.) grown in different concentrations of copper-contaminated soil. - Ecotox. Environ. Safe. 189: 109915, 2020d. Go to original source...
  63. Saleem M.H, Fahad S., Rehman M. et al.: Morpho-physiological traits, biochemical response and phytoextraction potential of short-term copper stress on kenaf (Hibiscus cannabinus L.) seedlings. - PeerJ 8:e8321, 2020b. Go to original source...
  64. Saleem M.H., Kamran M., Zhou Y. et al.: Appraising growth, oxidative stress and copper phytoextraction potential of flax (Linum usitatissimum L.) grown in soil differentially spiked with copper. - J. Environ. Manage. 257: 109994, 2020a. Go to original source...
  65. Saleem M.H., Rehman M., Zahid M. et al.: Morphological changes and antioxidative capacity of jute (Corchorus capsularis, Malvaceae) under different color light-emitting diodes. - Braz. J. Bot. 42: 581-590, 2019b. Go to original source...
  66. Saud S., Chen Y., Fahad S. et al.: Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery. - Environ. Sci. Pollut. R. 23: 17647-17655, 2016. Go to original source...
  67. Saud S., Chen Y., Long B. et al.: The different impact on the growth of cool season turf grass under the various conditions on salinity and drought stress. - Int. J. Agric. Sci. Res. 3: 77-84, 2017a.
  68. Saud S., Fahad S., Yajun C. et al.: Effects of nitrogen supply on water stress and recovery mechanisms in Kentucky bluegrass plants. - Front. Plant Sci. 8: 983, 2017b. Go to original source...
  69. Saud S., Li X., Chen Y. et al.: Silicon application increases drought tolerance of Kentucky bluegrass by improving plant water relations and morphophysiological functions. - Sci. World J. 2014: 368694, 2014. Go to original source...
  70. Sgherri C., Quartacci M.F., Navari-Izzo F.: Early production of activated oxygen species in root apoplast of wheat following copper excess. - J. Plant Physiol. 164: 1152-1160, 2007. Go to original source...
  71. Shao Q.S., Wang H.Z., Guo H.P. et al.: Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii. - PLoS ONE 9: e85996, 2014. Go to original source...
  72. Shimizu H., Saito Y., Nakashima H. et al.: Light environment optimization for lettuce growth in plant factory. - IFAC Proc. Vol. 44: 605-609, 2011. Go to original source...
  73. Simlat M., Ĥlêzak P., Mos M. et al.: The effect of light quality on seed germination, seedling growth and selected biochemical properties of Stevia rebaudiana Bertoni. - Sci. Hortic.-Amsterdam 211: 295-304, 2016. Go to original source...
  74. Singh D., Basu C., Meinhardt-Wollweber M., Roth B.: LEDs for energy efficient greenhouse lighting. - Renew. Sust. Energ. Rev. 49: 139-147, 2015. Go to original source...
  75. Sytar O., Zivcak M., Neugart S. et al.: Precultivation of young seedlings under different color shades modifies the accumulation of phenolic compounds in Cichorium leaves in later growth phases. - Environ. Exp. Bot. 165: 30-38, 2019. Go to original source...
  76. Szabados L., Savouré A.: Proline: a multifunctional amino acid. - Trends Plant Sci. 15: 89-97, 2010. Go to original source...
  77. Thiyam-Holländer U., Aladedunye F., Logan A. et al.: Identification and quantification of canolol, sinapine and sinapic acid from Indian mustard oils and Canadian mustard products. - Eur. J. Lipid Sci. Tech. 116: 1664-1674, 2014. Go to original source...
  78. Trouwborst G., Oosterkamp J., Hogewoning S.W. et al.: The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. - Physiol. Plantarum 138: 289-300, 2010. Go to original source...
  79. Urbonavièiūtė A., Pinho P., Samuolienė G. et al.: Effect of short wavelength light on lettuce growth and nutritional quality. Scientific Works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture. Pp. 157-165. Lithua-nian Institute of Horticulture and Lithuanian University of Agriculture, 2007.
  80. Venema J.H., Villerius L., van Hasselt P.R.: Effect of acclimation to suboptimal temperature on chilling-induced photodamage: Comparison between a domestic and a high-altitude wild Lycopersicon species. - Plant Sci. 152: 153-163, 2000. Go to original source...
  81. Wang Y.C., Zhang H.X., Zhao B., Yuan X.F.: Improved growth of Artemisia annua L. hairy roots and artemisinin production under red light conditions. - Biotechnol. Lett. 23: 1971-1973, 2001.
  82. Wu M.C., Hou C.Y., Jiang C.M. et al.: A novel approach of LED light radiation improves the antioxidant activity of pea seedling. - Food Chem. 101: 1753-1758, 2007. Go to original source...
  83. Wu W., Ma B.L. Whalen J.K.: Enhancing rapeseed tolerance to heat and drought stresses in a changing climate: perspectives for stress adaptation from root system architecture. - Adv. Agron. 151: 87-157, 2018. Go to original source...
  84. Yao X.Y., Liu X.Y., Xu Z.G., Jiao X.L.: Effects of light intensity on leaf microstructure and growth of rape seedlings cultivated under a combination of red and blue LEDs. - J. Integr. Agr. 16: 97-105, 2017. Go to original source...
  85. Yu W., Liu Y., Song L. et al.: Effect of differential light quality on morphology, photosynthesis, and antioxidant enzyme activity in Camptotheca acuminata seedlings. - J. Plant Growth Regul. 36: 148-160, 2017. Go to original source...
  86. Zhang J., Jiang F., Yang P. et al.: Responses of canola (Brassica napus L.) cultivars under contrasting temperature regimes during early seedling growth stage as revealed by multiple physiological criteria. - Acta Physiol. Plant. 37: 7, 2015. Go to original source...
  87. Zhao X., Li Y.Y., Xiao H.L. et al.: Nitric oxide blocks blue light-induced K+ influx by elevating the cytosolic Ca2+ concentration in Vicia faba L. guard cells. - J. Integr. Plant Biol. 55: 527-536, 2013a. Go to original source...
  88. Zhao X., Qiao X.R., Yuan J. et al.: Nitric oxide inhibits blue light-induced stomatal opening by regulating the K+ influx in guard cells. - Plant Sci. 184: 29-35, 2012. Go to original source...
  89. Zhao X., Wang Y.L., Qiao X.R. et al.: Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium. - Plant Physiol. 162: 1539-1551, 2013b. Go to original source...
  90. Zhao X., Zhao Q., Xu C. et al.: Phot2-regulated relocation of NPH3 mediates phototropic response to high-intensity blue light in Arabidopsis thaliana. - J. Integr. Plant Biol. 60: 562-577, 2018. Go to original source...