Photosynthetica 2020, 58(5):1107-1115 | DOI: 10.32615/ps.2020.057

Subtle changes in solar radiation under a green-to-red conversion film affect the photosynthetic performance and chlorophyll fluorescence of sweet pepper

H.I. YOON, J.H. KANG, W.H. KANG, J.E. SON
Department of Agriculture, Forest and Bioresources (Horticultural Science and Biotechnology) and Research Institute of Agriculture and Life Sciences, Seoul National University, 08826 Seoul, Korea

Although spectrum conversion films are used to improve the photosynthetic efficiency and, ultimately, crop growth, the effects of the modified spectrum on photosynthetic traits in plants have not yet been sufficiently reported. The objective of this study was to investigate the changes in photosynthetic performance and chlorophyll fluorescence of sweet pepper (Capsicum annuum L.) under a green-to-red conversion (GtR) film. The GtR-modified spectrum increased the dry mass and decreased the petiole length. The photosynthetic light-response curves were significantly improved, and the gap of the maximum photosynthetic rates increased over time after covering. The GtR-modified spectrum significantly increased chlorophyll fluorescence parameters in the JIP-test, such as parameters related to the reduction of end electron acceptors on the PSI acceptor side, the efficiency for electron transport in PSII, and the performance indexes. Our data indicated that the GtR-modified spectrum promotes electron transfer around PSI, improving photosynthetic performance and growth.

Additional key words: bell pepper; chlorophyll fluorescence transient; gas exchange; light adaptation; light quality.

Received: April 23, 2020; Revised: July 15, 2020; Accepted: August 9, 2020; Prepublished online: September 24, 2020; Published: December 8, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
YOON, H.I., KANG, J.H., KANG, W.H., & SON, J.E. (2020). Subtle changes in solar radiation under a green-to-red conversion film affect the photosynthetic performance and chlorophyll fluorescence of sweet pepper. Photosynthetica58(5), 1107-1115. doi: 10.32615/ps.2020.057
Download citation

References

  1. Allen J.F.: State transitions - A question of balance. - Science 299: 1530-1532, 2003. Go to original source...
  2. Bussotti F., Desotgiu R., Pollastrini M., Cascio C.: The JIP test: A tool to screen the capacity of plant adaptation to climate change. - Scand. J. Forest Res. 25: 43-50, 2010. Go to original source...
  3. Ceusters N., Valcke R., Frans M. et al.: Performance index and PSII connectivity under drought and contrasting light regimes in the CAM orchid Phalaenopsis. - Front. Plant Sci. 10: 1012, 2019. Go to original source...
  4. Chen Z.Y., Peng Z.S., Yang J. et al.: A mathematical model for describing light-response curves in Nicotiana tabacum L. - Photosynthetica 49: 467-471, 2011. Go to original source...
  5. Dau H.: New trends in photobiology: Short-term adaptation of plants to changing light intensities and its relation to Photosystem II photochemistry and fluorescence emission. - J. Photoch. Photobio. B 26: 3-27, 1994. Go to original source...
  6. de Kreij C., Voogt W., Baas R.: Nutrient Solutions and Water Quality for Soilless Cultures. Pp. 32. Research Station for Floriculture and Glasshouse Vegetables, Naaldwijk 1999.
  7. De Salvador F.R., Scarascia Mugnozza G., Vox G. et al.: Innovative photoselective and photoluminescent plastic films for protected cultivation. - Acta Hortic. 801: 115-122, 2008. Go to original source...
  8. Dieleman J.A., De Visser P.H.B., Meinen E. et al.: Integrating morphological and physiological responses of tomato plants to light quality to the crop level by 3D modeling. - Front. Plant Sci. 10: 839, 2019. Go to original source...
  9. Dietzel L., Bräutigam K., Pfannschmidt T.: Photosynthetic acclimation: State transitions and adjustment of photosystem stoichiometry - functional relationships between short-term and long-term light quality acclimation in plants. - FEBS J. 275: 1080-1088, 2008. Go to original source...
  10. Duursma R.A., Falster D.S., Valladares F. et al.: Light interception efficiency explained by two simple variables: a test using a diversity of small- to medium-sized woody plants. - New Phytol. 193: 397-408, 2012. Go to original source...
  11. El-Bashir S.M., Al-Harbi F.F., Elburaih H. et al.: Red photoluminescent PMMA nanohybrid films for modifying the spectral distribution of solar radiation inside greenhouses. - Renew. Energ. 85: 928-938, 2016. Go to original source...
  12. Givnish T.: Adaptation to sun and shade: A whole-plant perspective. - Funct. Plant Biol. 15: 63-92, 1988. Go to original source...
  13. Gururani M.A., Venkatesh J., Ganesan M. et al.: In vivo assessment of cold tolerance through chlorophyll-a fluorescence in transgenic zoysiagrass expressing mutant phytochrome A. - PLoS ONE 10: e0127200, 2015. Go to original source...
  14. Hemming S., van Os E.A., Hemming J., Dieleman J.A.: The effect of new developed fluorescent greenhouse films on the growth of Fragaria × ananassa "Elsanta". - Eur. J. Hortic. Sci. 71: 145-154, 2006. Go to original source...
  15. Hidaka K., Yoshida K., Shimasaki K.: Spectrum conversion film for regulation of plant growth. - J. Fac. Agric. Kyushu Univ. 53: 549-552, 2008. Go to original source...
  16. Inada K.: Action spectra for photosynthesis in higher plants. - Plant Cell Physiol. 17: 355-365, 1976.
  17. Kalaji H.M., Carpentier R., Allakhverdiev S.I., Bosa K.: Fluorescence parameters as early indicators of light stress in barley. - J. Photoch. Photobio. B 112: 1-6, 2012. Go to original source...
  18. Kitta E., Baille A.D., Katsoulas N. et al.: Effects of cover optical properties on screenhouse radiative environment and sweet pepper productivity. - Biosyst. Eng. 122: 115-126, 2014a. Go to original source...
  19. Kitta E., Katsoulas N., Kandila A. et al.: Photosynthetic acclima-tion of sweet pepper plants to screenhouse conditions. - HortScience 49: 166-172, 2014b. Go to original source...
  20. Kong Y., Avraham L., Perzelan Y. et al.: Pearl netting affects postharvest fruit quality in 'Vergasa' sweet pepper via light environment manipulation. - Sci. Hortic.-Amsterdam 150: 290-298, 2013. Go to original source...
  21. Kosmala A., Perlikowski D., Pawłowicz I., Rapacz M.: Changes in the chloroplast proteome following water deficit and subsequent watering in a high- and a low-drought-tolerant genotype of Festuca arundinacea. - J. Exp. Bot. 63: 6161-6172, 2012. Go to original source...
  22. Kwon J.-K., Park K.-S., Choi H.-G. et al.: Growth and developmental characteristics of lettuce, tomato and melon grown under spectrum conversion greenhouse films. - J. Agric. Life Sci. 47: 57-63, 2013.
  23. Kwon J.K., Khoshimkhujaev B., Lee J.H. et al.: Growth and yield of tomato and cucumber plants in polycarbonate or glass greenhouses. - Korean J. Hortic. Sci. 35: 79-87, 2017. Go to original source...
  24. Lamnatou C., Chemisana D.: Solar radiation manipulations and their role in greenhouse claddings: Fluorescent solar concentrators, photoselective and other materials. - Renew. Sust. Energ. Rev. 27: 175-190, 2013. Go to original source...
  25. Lee S.-H., Tewari R.K., Hahn E.-J., Paek K.Y.: Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania somnifera (L.) Dunal. plantlets. - Plant Cell. Tiss. Org. 90: 141-151, 2007. Go to original source...
  26. Li S., Rajapakse N.C., Young R.E.: Far-red light absorbing photoselective plastic films affect growth and flowering of chrysanthemum cultivars. - HortScience 38: 284-287, 2003. Go to original source...
  27. Li S., Rajapakse N.C., Young, R.E., Oi R.: Growth responses of chrysanthemum and bell pepper transplants to photoselective plastic films. - Sci. Hortic.-Amsterdam 84: 215-225, 2000. Go to original source...
  28. Li Y., Tu W., Liu C. et al.: Light conversion film promotes CO2 assimilation by increasing cyclic electron flow around Photosystem I in Arabidopsis thaliana. - Int. J. Hydrogen Energ. 42: 8545-8553, 2017. Go to original source...
  29. Lobo F. de A., de Barros M.P., Dalmagro H.J. et al.: Fitting net photosynthetic light-response curves with Microsoft Excel - a critical look at the models. - Photosynthetica 51: 445-456, 2013. Go to original source...
  30. Lötscher M., Nösberger J.: Branch and root formation in Trifolium repens is influenced by the light environment of unfolded leaves. - Oecologia 111: 499-504, 1997. Go to original source...
  31. McCree K.J.: The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. - Agric. Meteorol. 9: 191-216, 1971. Go to original source...
  32. Niinemets Ü.: A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. - Ecol. Res. 25: 693-714, 2010. Go to original source...
  33. Nishimura Y., Wada E., Fukumoto Y. et al.: The effect of spectrum conversion covering film on cucumber in soilless culture. - Acta Hortic. 956: 481-487, 2012. Go to original source...
  34. Novoplansky A., Sachs T., Cohen D. et al.: Increasing plant productivity by changing the solar spectrum. - Sol. Energ. Mat. 21: 17-23, 1990. Go to original source...
  35. Oliveira G.C., Vieira W.L., Bertolli S.C., Pacheco A.C.: Photosynthetic behavior, growth and essential oil production of Melissa officinalis L. cultivated under colored shade nets. - Chil. J. Agr. Res. 76: 123-128, 2016. Go to original source...
  36. Paradiso R., Meinen E., Snel J.F.H. et al.: Spectral dependence of photosynthesis and light absorptance in single leaves and canopy in rose. - Sci. Hortic.-Amsterdam 127: 548-554, 2011. Go to original source...
  37. Park K.S., Kwon J.K., Lee D.K., Son J.E.: Microclimate and crop growth in the greenhouses covered with spectrum conversion films using different phosphor particle sizes. - Protect. Hortic. Plant Fact. 25: 111-117, 2016. doi: 10.12791/KSBEC.2016.25.2.111 [In Korean] Go to original source...
  38. Patil G.G., Oi R., Gissinger A., Moe R.: Plant morphology is affected by light quality selective plastic films and alternating day and night temperature. - Gartenbauwissenschaft 66: 53-60, 2001. Go to original source...
  39. Pogreb R., Finkelshtein B., Shmukler Y. et al.: Low-density polyethylene films doped with europium(III) complex: Their properties and applications. - Polym. Adv. Technol. 15: 414-418, 2004. Go to original source...
  40. Qi Y., Wang Y., Yu Y. et al.: Exploring highly efficient light conversion agents for agricultural film based on aggregation induced emission effects. - J. Mater. Chem. C 4: 11291-11297, 2016. Go to original source...
  41. Ranwala N.K.D., Decoteau D.R., Ranwala A.P. et al.: Changes in soluble carbohydrates during phytochrome-regulated petiole elongation in watermelon seedlings. - Plant Growth Regul. 38: 157-163, 2002. Go to original source...
  42. Rapacz M.: Chlorophyll a fluorescence transient during freezing and recovery in winter wheat. - Photosynthetica 45: 409-418, 2007. Go to original source...
  43. Schettini E., De Salvador F.R., Scarascia-Mugnozza G., Vox G.: Radiometric properties of photoselective and photolumine-scent greenhouse plastic films and their effects on peach and cherry tree growth. - J. Hortic. Sci. Biotech. 86: 79-83, 2011. Go to original source...
  44. Schettini E., Vox G.: Greenhouse plastic films capable of modifying the spectral distribution of solar radiation. - J. Agric. Eng. 41: 19, 2010. Go to original source...
  45. Smith H.: Light quality, photoperception, and plant strategy. - Ann. Rev. Plant Physio. 33: 481-518, 1982. Go to original source...
  46. Stanton K.M., Weeks S.S., Dana M.N., Mickelbart M.V.: Light exposure and shade effects on growth, flowering, and leaf morphology of Spiraea alba Du Roi and Spiraea tomentosa L. - HortScience 45: 1912-1916, 2010. Go to original source...
  47. Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. - J. Photoch. Photobio. B Biol. 104: 236-257, 2011. Go to original source...
  48. Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? - Photosynthetica 56: 86-104, 2018. Go to original source...
  49. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluores-cence transient as a tool to characterize and screen photosyn-thetic samples. - In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. Taylor & Francis, London 2000.
  50. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  51. Strauss A.J., Krüger G.H.J., Strasser R.J., Van Heerden P.D.R.: Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. - Environ. Exp. Bot. 56: 147-157, 2006. Go to original source...
  52. Tafoya F.A., Juárez M.G.Y., Orona C.A.L. et al.: Sunlight transmitted by colored shade nets on photosynthesis and yield of cucumber. - Ciênc. Rural 48: 09, 2018. Go to original source...
  53. Takenaka A.: Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. - Ecol. Res. 9: 109-114, 1994. Go to original source...
  54. Thornley J.H.M.: Mathematical Models in Plant Physiology. Pp. 318. Academic Press, London 1976.
  55. Tsimilli-Michael M., Strasser R.J.: In vivo assessment of stress impact on plants' vitality: applications in detecting and eva-luating the beneficial role of mycorrhization on host plants. -In: Varma A. (ed.): Mycorrhiza. State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics. 3rd edition. Pp. 679-703. Springer, Berlin-Heidelberg 2008. Go to original source...
  56. Wang H., Gu M., Cui J. et al.: Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. - J. Photoch. Photobio. B 96: 30-37, 2009. Go to original source...
  57. Wollman F.-A.: State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. - EMBO J. 20: 3623-3630, 2001. Go to original source...
  58. Wondraczek L., Batentschuk M., Schmidt M.A. et al.: Solar spectral conversion for improving the photosynthetic activity in algae reactors. - Nat. Commun. 4: 2047, 2013. Go to original source...
  59. Yang X., Xu H., Shao L. et al.: Response of photosynthetic capacity of tomato leaves to different LED light wavelength. -Environ. Exp. Bot. 150: 161-171, 2018. Go to original source...
  60. Yoon H.I., Kim D., Son J.E.: Spatial and temporal bioactive compound contents and chlorophyll fluorescence of kale (Brassica oleracea L.) under UV-B exposure near harvest time in controlled environments. - Photochem. Photobiol. 96: 845-852, 2020. Go to original source...
  61. Yusuf M.A., Kumar D., Rajwanshi R. et al.: Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. - BBA-Bioenergetics 1797: 1428-1438, 2010. Go to original source...
  62. ®ivčák M., Brestič M., Oląovská K., Slamka P.: Performance index as a sensitive indicator of water stress in Triticum aestivum L. - Plant Soil Environ. 54: 133-139, 2008. Go to original source...