Photosynthetica 2021, 59(1):24-36 | DOI: 10.32615/ps.2020.083

Transcriptome sequence and physiological analysis revealed the roles of carotenoids and photosynthesis under low temperature combined with low-light stress on pepper (Capsicum annuum L.)

J. LI, J.M. XIE, J.H. YU, J. LYV, E.P. BAKPA, X.D. ZHANG, J. ZHANG, C.N. TANG, D.X DING, N.H. LI, F. GAO, C. WANG
College of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, 730070 Lanzhou, China

Low temperature combined with low light (LL) is an adverse factor seriously affecting pepper productivity and quality. However, little is known about the molecular mechanisms related to LL stress responses. Therefore, transcriptome and physiological changes in Hangjiao No. 2 (H2) and Xiangtela No. 2 (X2) pepper were studied under normal conditions and LL. We found 8,392 and 8,028 differentially expressed genes in H2 and X2, respectively, significantly associated with photosynthesis, photosynthesis antenna proteins, and carotenoids, were enriched in 27 and 40 gene ontology terms in H2 and X2, respectively, and 14 and 16 Kyoto Encyclopedia of Gene and Genomes pathways. The accuracy and reliability of the RNA-Seq results were confirmed by qRT-PCR. Furthermore, carotenoid-related genes ZDS, CA1, CA2, NCED, LOC107840293, and LOC107850059 functioned in response to LL. Additionally, LL significantly decreased photosynthesis capacity, photosynthetic pigment contents, as well as maximum quantum efficiency, and changed carotenoid-related compounds, revealing photosynthesis and carotenoids were involved in LL stress response. Our findings provide insight into LL stress-induced transcriptional expression patterns.

Additional key words: carotenoid metabolism; pepper; photosynthesis; transcriptome; zeaxanthin.

Received: September 29, 2020; Revised: November 15, 2020; Accepted: December 1, 2020; Prepublished online: December 18, 2020; Published: March 18, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
LI, J., XIE, J.M., YU, J.H., LYV, J., BAKPA, E.P., ZHANG, X.D., ... WANG, C. (2021). Transcriptome sequence and physiological analysis revealed the roles of carotenoids and photosynthesis under low temperature combined with low-light stress on pepper (Capsicum annuum L.). Photosynthetica59(1), 24-36. doi: 10.32615/ps.2020.083
Download citation

Supplementary files

Download fileLi_2646_supplement_-_Table_4S.xlsx

File size: 18.14 kB

Download fileLi_2646_supplement_-_Table_7S.xlsx

File size: 19.75 kB

Download fileLi_2646_supplement_-_Table_5S.xlsx

File size: 22.41 kB

Download fileLi_2646_supplement_-_Table_6S.xlsx

File size: 17.72 kB

Download fileLi_2646_supplement_-_Table_2S.xlsx

File size: 971.01 kB

Download fileLi_2646_supplement_-_Table_3S.xlsx

File size: 931.7 kB

Download fileLi_2646_supplement_-_Tables_1S,_8S-11S,_Figs._1-3.docx

File size: 809.92 kB

References

  1. Abdelaal K.A.A., Attia K.A., Alamery S.F. et al.: Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. - Sustainability 12: 1736, 2020a. Go to original source...
  2. Abdelaal K.A.A., El-Maghraby L.M., Elansary H. et al.: Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. - Agronomy 10: 26, 2020b. Go to original source...
  3. Abdelaal K.A.A., Hafez Y.M., El-Afry M.M. et al.: Effect of some osmoregulators on photosynthesis, lipid peroxidation, antioxidative capacity, and productivity of barley (Hordeum vulgare L.) under water deficit stress. - Environ. Sci. Pollut. R. 25: 30199-30211, 2018. Go to original source...
  4. Abdelaal K.A.A., Hafez Y.M., El Sabagh A., Saneoka H.: Ameliorative effects of abscisic acid and yeast on morpho-physiological and yield characteristics of maize plant (Zea mays L.) under water deficit conditions. - Fresen. Environ. Bull. 26: 7372-7383, 2017.
  5. Alkahtani M.D.F., Attia K.A., Hafez Y.M. et al.: Chlorophyll fluorescence parameters and antioxidant defense system can display salt tolerance of salt acclimated sweet pepper plants treated with chitosan and plant growth promoting rhizobacteria. - Agronomy 10: 1180, 2020. Go to original source...
  6. An D., Yang J., Zhang P.: Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress. - BMC Genomics 13: 64, 2012. Go to original source...
  7. Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: An overview. - Photosynthetica 51: 163-190, 2013. Go to original source...
  8. Barrero-Gil J., Huertas R., Rambla J.L. et al.: Tomato plants increase their tolerance to low temperature in a chilling acclimation process entailing comprehensive transcriptional and metabolic adjustments. - Plant Cell Environ. 39: 2303-2318, 2016. Go to original source...
  9. Bouvier F., Keller Y., d'Harlingue A., Camara B.: Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.). - BBA-Lipid. Lipid Met. 1391: 320-328, 1998. Go to original source...
  10. Campany C.E., Tjoelker M.G., von Caemmerer S., Duursma R.A.: Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks. - Plant Cell Environ. 39: 2762-2773, 2016. Go to original source...
  11. Cazzonelli C.I., Pogson B.J.: Source to sink: regulation of carotenoid biosynthesis in plants. - Trends Plant Sci. 15: 266-274, 2010. Go to original source...
  12. Chen D., Fu Y., Liu G., Liu H.: Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at different growth stages in BLSS. - Adv. Space Res. 53: 1557-1566, 2014b. Go to original source...
  13. Chen J., Kai H., Peng Q. et al.: RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana geno- types. - BMC Genomics 15: 571, 2014a. Go to original source...
  14. Dall'Osto L., Cazzaniga S., Havaux M., Bassi R.: Enhanced photoprotection by protein-bound vs free xanthophyll pools: A comparative analysis of chlorophyll b and xanthophyll biosynthesis mutants. - Mol. Plant 3: 576-593, 2010. Go to original source...
  15. Daood H.G., Bencze G., Palotas G. et al.: HPLC analysis of carotenoids from tomatoes using cross-linked C18 column and MS detection. - J. Chromatogr. Sci. 52: 985-991, 2014. Go to original source...
  16. Davison P.A., Hunter C.N., Horton P.: Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis. - Nature 418: 203-206, 2002. Go to original source...
  17. Demmig-Adams B., Adams III W.W.: Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. - New Phytol. 172: 11-21, 2006. Go to original source...
  18. Deng S., Ma J., Zhang L. et al.: De novo transcriptome sequencing and gene expression profiling of Magnolia wufengensis in response to cold stress. - BMC Plant Biol. 19: 321, 2019. Go to original source...
  19. Fratianni A., Mignogna R., Niro S., Panfili G.: Determination of lutein from fruit and vegetables through an alkaline hydrolysis extraction method and HPLC analysis. - J. Food Sci. 80: 2686-2691, 2015. Go to original source...
  20. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - BBA-Gen. Subjects 990: 87-92, 1989. Go to original source...
  21. Hafez Y.M., Attia K.A., Alamery S. et al.: Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. - Agronomy 10: 630, 2020. Go to original source...
  22. Havaux M.: Carotenoid oxidation products as stress signals in plants. - Plant J. 79: 597-606, 2014. Go to original source...
  23. Kang C., Zhai H., Xue L.Y. et al.: A lycopene β-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweetpotato. - Plant Sci. 272: 243-254, 2018. Go to original source...
  24. Kang L., Ji C.Y., Kim S.H. et al.: Suppression of the β-carotene hydroxylase gene increases β-carotene content and tolerance to abiotic stress in transgenic sweetpotato plants. - Plant Physiol. Bioch. 117: 24-33, 2017. Go to original source...
  25. Ke Q.B., Kang L., Kim H.S. et al.: Down-regulation of lycopene ε-cyclase expression in transgenic sweetpotato plants increases the carotenoid content and tolerance to abiotic stress. - Plant Sci. 281: 52-60, 2019. Go to original source...
  26. Kim J.S., An C.G., Park J.S. et al.: Carotenoid profiling from 27 types of paprika (Capsicum annuum L.) with different colors, shapes, and cultivation methods. - Food Chem. 201: 64-71, 2016. Go to original source...
  27. Kirilovsky D., Büchel C.: Evolution and function of light-harvesting antenna in oxygenic photosynthesis. - Adv. Bot. Res. 91: 247-293, 2019. Go to original source...
  28. Kramer D.M., Johnson G., Kiirats O., Edwards G.E.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. - Photosynth. Res. 79: 209, 2004. Go to original source...
  29. Legris M., Nieto C., Sellaro R. et al.: Perception and signalling of light and temperature cues in plants. - Plant J. 90: 683-697, 2017. Go to original source...
  30. Leiva-Ampuero A., Agurto M., Matus J.T. et al.: Salinity impairs photosynthetic capacity and enhances carotenoid-related gene expression and biosynthesis in tomato (Solanum lycopersicum L. cv. Micro-Tom). - PeerJ 8: e9742, 2020. Go to original source...
  31. Li C., Ji J., Wang G. et al.: Over-expression of LcPDS, LcZDS, and LcCRTISO, genes from wolfberry for carotenoid biosynthesis, enhanced carotenoid accumulation, and salt tolerance in tobacco. - Front. Plant Sci. 11: 119, 2020. Go to original source...
  32. Li J., Ping Y., Kang J.G. et al.: Transcriptome analysis of pepper (Capsicum annuum L.) revealed a role of 24-epibrassinolide in response to chilling. - Front. Plant Sci. 7: 1281, 2016. Go to original source...
  33. Li J., Xie J.M., Yu J.H. et al.: Reversed-phase high-performance liquid chromatography for the quantification and optimization for extracting 10 kinds of carotenoids in pepper (Capsicum annuum L.) leaves. - J. Agr. Food Chem. 65: 8475-8488, 2017. Go to original source...
  34. Li M., Sui N., Lin L. et al.: Transcriptomic profiling revealed genes involved in response to cold stress in maize. - Funct. Plant Biol. 46: 830-844, 2019. Go to original source...
  35. Llorente B.: Regulation of carotenoid biosynthesis in photo-synthetic organs. - In: Stange C. (ed.): Carotenoids in Nature. Subcellular Biochemistry. Pp. 141-160. Vol. 79. Springer, Cham 2016. Go to original source...
  36. Lucau-Danila A., Toitot C., Goulas E. et al.: Transcriptome analysis in pea allows to distinguish chilling and acclimation mechanisms. - Plant Physiol. Bioch. 58: 236-244, 2012. Go to original source...
  37. Mishra K.B., Mishra A., Kubásek J. et al.: Low temperature induced modulation of photosynthetic induction in non-acclimated and cold-acclimated Arabidopsis thaliana: chloro-phyll a fluorescence and gas-exchange measurements. - Photosynth. Res. 139: 123-143, 2019. Go to original source...
  38. Moehs C.P., Tian L., Osteryoung K.W., DellaPenna D.: Analysis of carotenoid biosynthetic gene expression during marigold petal development. - Plant Mol. Biol. 45: 281-293, 2001. Go to original source...
  39. Ou L.J., Wei G., Zhang Z.Q. et al.: Effects of low temperature and low irradiance on the physiological characteristics and related gene expression of different pepper species. - Photosynthetica 53: 85-94, 2015. Go to original source...
  40. Pedersen O., Colmer T.D., Borum J. et al.: Heat stress of two tropical seagrass species during low tides - impact on underwater net photosynthesis, dark respiration and diel in situ internal aeration. - New Phytol. 210: 1207-1218, 2016. Go to original source...
  41. Pedrosa A.M., Cidade L.C., Martins C.P.S. et al.: Effect of overexpression of citrus 9-cis-epoxycarotenoid dioxygenase 3 (CsNCED3) on the physiological response to drought stress in transgenic tobacco. - Genet. Mol. Res. 16: gmr16019292, 2017. Go to original source...
  42. Pradhan S.K., Pandit E., Nayak D.K. et al.: Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. - BMC Plant Biol. 19: 352, 2019. Go to original source...
  43. Qin C., Yu C., Shen Y. et al.: Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. - P. Natl. Acad. Sci. USA 111: 5135-5140, 2014. Go to original source...
  44. Rodriguez-Amaya D.B.: Structures and analysis of carotenoid molecules. - In: Stange C. (ed.): Carotenoids in Nature: Biosynthesis, Regulation and Function. Pp. 71-108. Springer, Cham 2016. Go to original source...
  45. Sanghera G.S., Wani S.H., Hussain W., Singh N.B.: Engineering cold stress tolerance in crop plants. - Curr. Genomics 12: 30-43, 2011. Go to original source...
  46. Shi C.Y., Yang H., Wei C.L. et al.: Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. - BMC Genomics 12: 131, 2011. Go to original source...
  47. Song H., Li Y., Xu X. et al.: Analysis of genes related to chlorophyll metabolism under elevated CO2 in cucumber (Cucumis sativus L.). - Sci. Hortic.-Amsterdam 261: 108988, 2020. Go to original source...
  48. Takeuchi J., Okamoto M., Mega R. et al.: Abscinazole-E3M, a practical inhibitor of abscisic acid 8'-hydroxylase for improving drought tolerance. - Sci. Rep.-UK 6: 37060, 2016. Go to original source...
  49. Thomashow M.F.: Plant cold acclimation: Freezing Tolerance Genes and Regulatory Mechanisms. - Annu. Rev. Plant Phys. 50: 571-599, 1999. Go to original source...
  50. Trapnell C., Pachter L., Salzberg S.L.: TopHat: discovering splice junctions with RNA-Seq. - Bioinformatics 25: 1105-1111, 2009. Go to original source...
  51. Truffault V., Gest N., Garchery C. et al.: Reduction of MDHAR activity in cherry tomato suppresses growth and yield and MDHAR activity is correlated with sugar levels under high light. - Plant Cell Environ. 39: 1279-1292, 2016. Go to original source...
  52. Tricker P.J., Haefele S.M., Okamoto M.: The interaction of drought and nutrient stress in wheat: Opportunities and limitations. - In: Ahmad P. (ed.): Water Stress and Crop Plants: A Sustainable Approach. Pp. 695-710. John Wiley & Sons, Chichester 2016. Go to original source...
  53. Tung S.A., Smeeton R., White C.A. et al.: Over-expression of LeNCED1 in tomato (Solanum lycopersicum L.) with the rbcS3C promoter allows recovery of lines that accumulate very high levels of abscisic acid and exhibit severe phenotypes. - Plant Cell Environ. 31: 968-981, 2008. Go to original source...
  54. Wang K., Bai Z.Y., Liang Q.Y. et al.: Transcriptome analysis of chrysanthemum (Dendranthema grandiflorum) in response to low temperature stress. - BMC Genomics 19: 319, 2018a. Go to original source...
  55. Wang M., Zhang X., Liu J.H.: Deep sequencing-based characterization of transcriptome of trifoliate orange (Poncirus trifoliata (L.) Raf.) in response to cold stress. - BMC Genomics 16: 555, 2015. Go to original source...
  56. Wang S., Zhuang K., Zhang S. et al.: Overexpression of a tomato carotenoid ε-hydroxylase gene (SlLUT1) improved the drought tolerance of transgenic tobacco. - J. Plant Physiol. 222: 103-112, 2018b. Go to original source...
  57. Wolters A.M., Uitdewilligen J.G.A.M.L., Kloosterman B.A. et al.: Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers. - Plant Mol. Biol. 73: 659-671, 2010. Go to original source...
  58. Wu L., Li J., Li Z. et al.: Transcriptomic analyses of Camellia oleifera 'Huaxin' leaf reveal candidate genes related to long-term cold stress. - Int. J. Mol. Sci. 21: 846, 2020. Go to original source...
  59. Xu P.P., Cai W.M.: Functional characterization of the BnNCED3 gene in Brassica napus. - Plant Sci. 256: 16-24, 2017. Go to original source...
  60. Yuan H., Guo Y., Liu Y. et al.: 9-cis-epoxycarotenoid dioxy-genase 3 regulates plant growth and enhances multi-abiotic stress tolerance in rice. - Front. Plant Sci. 9: 162, 2018. Go to original source...
  61. Zhang J.F., Li J., Xie J.M. et al.: Changes in photosynthesis and carotenoid composition of pepper (Capsicum annuum L.) in response to low-light stress and low temperature combined with low-light stress. - Photosynthetica 58: 125-136, 2020a. Go to original source...
  62. Zhang R.R., Wang Y.H., Li T. et al.: Effects of simulated drought stress on carotenoid contents and expression of related genes in carrot taproots. - Protoplasma, 2020b. doi: 10.1007/s00709-020-01570-5. Go to original source...
  63. Zhao J., Hartmann H., Trumbore S. et al.: High temperature causes negative whole-plant carbon balance under mild drought. - New Phytol. 200: 330-339, 2013. Go to original source...
  64. Zhuang K., Kong F., Zhang S. et al.: Whirly1 enhances tolerance to chilling stress in tomato via protection of photosystem II and regulation of starch degradation. - New Phytol. 221: 1998-2012, 2019. Go to original source...