Photosynthetica 2021, 59(1):37-48 | DOI: 10.32615/ps.2020.076

Chlorophyll retention caused by STAY-GREEN (SGR) gene mutation enhances photosynthetic efficiency and yield in soybean hybrid Z1

P. WANG1, S.Y. HOU1, H.W. WEN1, Q.Z. WANG2, G.Q. LI1
2 College of Grassland Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi, China

To study the effect of a stay-green mutation on photosynthetic efficiency in hybrid offspring of soybean (Glycine max [L.] Merr.), the parameters of photosynthesis and chlorophyll (Chl) fluorescence were compared between a new stay-green variety Jinda Zhilv No. 1 (Z1) and one of its parents Jinda No. 74 (JD74). During leaf natural senescence, the Chl degradation attenuated in Z1. The net photosynthetic rate, stomatal conductance, and transpiration rate were consistently higher in Z1 than that in JD74 after flowering. The decreases of maximum photochemical efficiency of PSII, actual photochemical efficiency of PSII, and photochemical quenching coefficient were greater in JD74 than in Z1. Transcriptional levels of most genes involved in photosystems were much higher in Z1. All these effectively contributed to maintained photosystem stability and enhanced photosynthetic efficiency and yield in Z1. We also revealed that the STAY-GREEN gene mutation was responsible for inhibiting Chl degradation in Z1.

Additional key words: chlorophyll degradation; chlorophyll fluorescence; gene expression; photosynthetic rate; stay-green mutation.

Received: June 26, 2020; Revised: October 21, 2020; Accepted: October 30, 2020; Prepublished online: December 18, 2020; Published: March 18, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
WANG, P., HOU, S.Y., WEN, H.W., WANG, Q.Z., & LI, G.Q. (2021). Chlorophyll retention caused by STAY-GREEN (SGR) gene mutation enhances photosynthetic efficiency and yield in soybean hybrid Z1. Photosynthetica59(1), 37-48. doi: 10.32615/ps.2020.076
Download citation

Supplementary files

Download fileWang_2590_supplement.docx

File size: 15.22 kB

References

  1. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  2. Bukhov N.G., Heber U., Wiese C., Shuvalov V.A.: Energy dissipation in photosynthesis: Does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center? - Planta 212: 749-758, 2001. Go to original source...
  3. Cha K.W., Lee Y.J., Koh H.J. et al.: Isolation, characterization, and mapping of the stay green mutant in rice. - Theor. Appl. Genet. 104: 526-532, 2002. Go to original source...
  4. Chen Y.E., Wu N., Zhang Z.W. et al.: Perspective of monitoring heavy metals by moss visible chlorophyll fluorescence parameters. - Front. Plant Sci. 10: 35, 2019. Go to original source...
  5. Cui X., Niu H., Wu J. et al.: Response of chlorophyll fluorescence to dynamic light in three alpine species differing in plant architecture. - Environ. Exp. Bot. 58: 149-157, 2006. Go to original source...
  6. D±browski P., Baczewska-D±browska A.H., Kalaji H.M. et al.: Exploration of chlorophyll a fluorescence and plant gas exchange parameters as indicators of drought tolerance in perennial ryegrass. - Sensors 19: 2736, 2019. Go to original source...
  7. D±browski P., Pawlu¶kiewicz B., Baczewska A.H. et al.: Chlorophyll a fluorescence of perennial ryegrass (Lolium perenne L.) varieties under long term exposure to shade. - Zemdirbyste 102: 305-312, 2015. Go to original source...
  8. Demmig-Adams B., Adams III W.W.: The role of the xanthophylls cycle carotenoids in the protection of photosynthesis. - Trends Plant Sci. 1: 21-26, 1996. Go to original source...
  9. Derks A., Schaven K., Bruce D.: Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. - BBA-Bioenergetics 1847: 468-485, 2015. Go to original source...
  10. Elsheery N.I., Cao K.F.: Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. - Acta Physiol. Plant. 30: 769-777, 2008. Go to original source...
  11. Elsheery N.I., Helaly M.N., Omar S.A. et al.: Physiological and molecular mechanisms of salinity tolerance in grafted cucumber. - S. Afr. J. Bot. 130: 90-102, 2020b. Go to original source...
  12. Elsheery N.I., Sunoj V.S.J., Wen Y. et al.: Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. - Plant Physiol. Bioch. 149: 50-60, 2020a. Go to original source...
  13. Fang C., Li C.C., Li W.Y. et al.: Concerted evolution of D1 and D2 to regulate chlorophyll degradation in soybean. - Plant J. 77: 700-712, 2014. Go to original source...
  14. Fu W., Li P., Wu Y.: Effects of different light intensities on chlorophyll fluorescence characteristic and yield in lettuce. - Sci. Hortic.-Amsterdam 135: 45-51, 2012. Go to original source...
  15. Gong Y.H., Zhang J., Gao J.F. et al.: Slow export of photoassimilate from stay-green leaves during late grain-filling stage in hybrid winter wheat (Triticum aestivum L.). - J. Agron. Crop Sci. 191: 292-299, 2005. Go to original source...
  16. Hao X.Y., Han X., Li P. et al.: [Effects of elevated atmospheric CO2 concentration on mung bean leaf photosynthesis and chlorophyll fluorescence parameters.] - Chin. J. Appl. Ecol. 22: 2776-2780, 2011. [In Chinese] doi: 10.13287/j.1001-9332.2011.0390. Go to original source...
  17. Hashimoto H., Kura-Hotta M., Katoh S.: Changes in protein content and in the structure and number of chloroplasts during leaf senescence in rice seedlings. - Plant Cell Physiol. 30: 707-715, 1989.
  18. Kalaji H.M., Goltsev V., Bosa K. et al.: Experimental in vivo measurement of light emission in plants: a perspective dedicated to David Walker. - Photosynth. Res. 114: 69-96, 2012. Go to original source...
  19. Krause G.H.: Photoinhibition of photosynthesis: An evaluation of damaging and protective mechanisms. - Physiol. Plantarum 74: 566-574, 1988. Go to original source...
  20. Kusaba M., Tanaka A., Tanaka R.: Stay green plants: What do they tell us about the molecular mechanism of leaf senescence. - Photosynth. Res. 117: 221-234, 2013. Go to original source...
  21. Laxman R.H., Srinivasa Rao N.K., Bhatt R.M. et al.: Response of tomato (Lycopersicon esculentum Mill.) genotypes to elevated temperature. - J. Agrometeorol. 15: 38-44, 2013.
  22. Lee Y.H., Hong Y.N., Chow W.S.: Photoinactivation of photosystem II complexes and photoprotection by non-functional neighbors in Capsicum annuum L. leaves. - Planta 212: 332-342, 2001. Go to original source...
  23. Li X., Jiao D.M., Liu Y.L., Huang X.Q.: Chlorophyll fluorescence and membrane lipid peroxidation in the flag leaves of different high yield rice variety at late stage of development under natural condition. - Acta Bot. Sin. 44: 413-421, 2002.
  24. Nakano M., Yamada T., Masuda Y. et al.: A green-cotyledon/stay-green mutant exemplifies the ancient whole-genome duplications in soybean. - Plant Cell Physiol. 55: 1763-1771, 2014. Go to original source...
  25. Niyogi K.K.: Photoprotection revisited: genetic and molecular approaches. - Annu. Rev. Plant Phys. 50: 333-359, 1999. Go to original source...
  26. Ohashi Y., Nakayama N., Saneoka H., Fujita K.: Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. - Biol. Plantarum 50: 138-141, 2006. Go to original source...
  27. Park S.Y., Yu J.W., Park J.S. et al.: The senescence-induced staygreen protein regulates chlorophyll degradation. - Plant Cell 19: 1649-1664, 2007. Go to original source...
  28. Porra R.J., Thompson W.A., Kriedemann P.E.: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. - BBA-Bioenergetics 975: 384-394, 1989. Go to original source...
  29. Pru¾inskį A., Anders I., Aubry S. et al.: In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. - Plant Cell 19: 369-387, 2007. Go to original source...
  30. Rong H., Tang Y.Y., Zhang H. et al.: The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice. - J. Plant Physiol. 170: 1367-1373, 2013. Go to original source...
  31. Sakuraba Y., Kim D., Kim Y.S. et al.: Arabidopsis STAYGREEN-LIKE (SGRL) promotes abiotic stress-induced leaf yellowing during vegetative growth. - FEBS Lett. 588: 3830-3837, 2014. Go to original source...
  32. Sakuraba Y., Kim Y.S., Yoo S.C. et al.: 7-Hydroxymethyl chlorophyll a reductase functions in metabolic channeling of chlorophyll breakdown intermediates during leaf senes-cence. - Biochem. Biophys. Res. Commun. 430: 32-37, 2013. Go to original source...
  33. Sato Y., Morita R., Katsuma S. et al.: Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. - Plant J. 57: 120-131, 2009. Go to original source...
  34. Spano G., Fonzo N.D., Perrotta C. et al.: Physiological characterization of "stay green" mutants in durum wheat. - J. Exp. Bot. 54: 1415-1420, 2003. Go to original source...
  35. Standfuss J., Terwisscha van Scheltinga A.C., Lamborghini M., Kühlbrandt W.: Mechanisms of photoprotection and non-photochemical quenching in pea light-harvesting complex at 2.5 A resolution. - EMBO J. 24: 919-928, 2005. Go to original source...
  36. Sunoj V.S.J., Shroyer K.J., Jagadish S.V.K., Prasad P.V.V.: Diurnal temperature amplitude alters physiological and growth response of maize (Zea mays L.) during the vegetative stage. - Environ. Exp. Bot. 130: 113-121, 2016. Go to original source...
  37. Thomas H., Howarth C.J.: Five ways to stay green. - J. Exp. Bot. 51: 329-337, 2000. Go to original source...
  38. Tian F.X., Gong J.F., Wang G.P. et al.: Improved drought resistance in a wheat stay-green mutant tasg1 under field conditions. - Biol. Plantarum 56: 509-515, 2012. Go to original source...
  39. Tian F.X., Gong J.F., Zhang J. et al.: Enhanced stability of thylakoid membrane proteins and antioxidant competence contribute to drought stress resistance in the tasg1 wheat stay-green mutant. - J. Exp. Bot. 64: 1509-1520, 2013. Go to original source...
  40. Wang F.B., Huang F.D., Cheng F.M. et al.: [Photosynthesis and chloroplast ultra-structure characteristics of flag leaves for a premature senescence rice mutant.] - Acta Agron. Sin. 38: 871-879, 2012. [In Chinese] doi: 10.3724/SP.J.1006.2012.00871. Go to original source...
  41. Wang W.Q., Hao Q.Q., Tian F.X. et al.: Cytokinin-regulated sucrose metabolism in stay-green wheat phenotype. - PLoS ONE 11: e0161351, 2016. Go to original source...
  42. Yoo S.C., Cho S.H., Zhang H. et al.: Quantitative trait loci associated with functional stay-green SNU-SG1 in rice. - Mol. Cells 24: 83-94, 2007.
  43. Zheng H.J., Wu A.Z., Zheng C.C. et al.: QTL mapping of maize (Zea mays) stay-green traits and their relationship to yield. - Plant Breeding 128: 54-62, 2009. Go to original source...