Photosynthetica 2021, 59(2):238-244 | DOI: 10.32615/ps.2021.016

Comparison of water depth tolerance in two major wetland macrophytes, Phragmites australis and Typha angustifolia

U. SONG
Department of Biology, Jeju National University, 690-756 Jeju, South Korea

Two major emergent macrophytes, Phragmites australis and Typha angustifolia, show a clear zonation with respect to water depth, i.e., P. australis occupies shallower water than T. angustifolia. However, the reasons for this interspecific difference is unclear. Therefore, this study focused on the features that enable T. angustifolia to survive at greater water depths than P. australis. In both outdoor and greenhouse experiments, P. australis did not survive at the deepest water depth and showed significantly lower biomass, nitrogen content, and photosynthesis in most deep and/or aerated water than T. angustifolia. Differences in tolerances to changes in the water depth and responses to root aeration may underlie the clear zonation of the two species. As T. angustifolia and P. australis are both very common in wetlands around the world, understanding the causal factors determining their depth distributions, such as differences in photosynthetic rate at different depths, will be of great importance for managing or controlling these species.

Additional key words: antioxidant enzyme activity; cattail; ecophysiology; photosynthesis; reed; wetland.

Received: February 27, 2020; Revised: February 15, 2021; Accepted: March 9, 2021; Prepublished online: April 6, 2021; Published: June 29, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
SONG, U. (2021). Comparison of water depth tolerance in two major wetland macrophytes, Phragmites australis and Typha angustifolia. Photosynthetica59(2), 238-244. doi: 10.32615/ps.2021.016
Download citation

References

  1. Ailstock M.S., Norman C.M, Bushmann P.J.: Common reed Phragmites australis: Control and effects upon biodiversity in freshwater nontidal wetlands. ‒ Restor. Ecol. 9: 49-59, 2001. Go to original source...
  2. Asaeda T., Fujino T., Manatunge J.: Morphological adaptations of emergent plants to water flow: a case study with Typha angustifolia, Zizania latifolia and Phragmites australis. ‒ Freshw. Biol. 50: 1991-2001, 2005. Go to original source...
  3. Bellavance M.-E., Brisson J.: Spatial dynamics and morphological plasticity of common reed (Phragmites australis) and cattails (Typha sp.) in freshwater marshes and roadside ditches. ‒ Aquat. Bot. 93: 129-134, 2010. Go to original source...
  4. Brix H.: Functions of macrophytes in constructed wetlands. ‒ Water Sci. Technol. 29: 71-78, 1994. Go to original source...
  5. Carlsson F., Frykblom P., Liljenstolpe C.: Valuing wetland attributes: an application of choice experiments. ‒ Ecol. Econ. 47: 95-103, 2003. Go to original source...
  6. Coops H., van den Brink F.W.B., van der Velde G.: Growth and morphological responses of four helophyte species in an experimental water-depth gradient. ‒ Aquat. Bot. 54: 11-24, 1996. Go to original source...
  7. Coops H., van der Velde G.: Seed dispersal, germination and seedling growth of six helophyte species in relation to water-level zonation. ‒ Freshw. Biol. 34: 13-20, 1995. Go to original source...
  8. de Assis Murillo R., Corrêa Alves D., dos Santos Machado R. et al.: Responses of two macrophytes of the genus Polygonum to water level fluctuations and interspecific competition. ‒ Aquat. Bot. 157: 10-16, 2019. Go to original source...
  9. Engloner A.I.: Structure, growth dynamics and biomass of reed (Phragmites australis) - A review. ‒ Flora 204: 331-346, 2009. Go to original source...
  10. Erwin K.L.: Wetlands and global climate change: the role of wetland restoration in a changing world. ‒ Wetl. Ecol. Manag. 17: 71, 2009. Go to original source...
  11. Findlay S.E.G., Dye S., Kuehn K.A.: Microbial growth and nitrogen retention in litter of Phragmites australis compared to Typha angustifolia. ‒ Wetlands 22: 616-625, 2002. Go to original source...
  12. Gregg W.W., Rose F.L.: The effects of aquatic macrophytes on the stream microenvironment. ‒ Aquat. Bot. 14: 309-324, 1982. Go to original source...
  13. Hiscox J.D., Israelstam G.F.: A method for the extraction of chlorophyll from leaf tissue without maceration. ‒ Can. J. Bot. 57: 1332-1334, 1979. Go to original source...
  14. Kang H., Joo Y.: The structural characteristics in natural wetlands and fitted depth zones of Phragmites japonica. ‒ J. Korean Inst. Landsc. Archit. 17: 191-200, 1999.
  15. Li F., Xie Y., Chen X. et al.: Plant distribution can be reflected by physiological responses to salinity of three submerged macrophytes from the Modern Yellow River Delta. ‒ Fundam. Appl. Limnol. 179: 159-167, 2011. Go to original source...
  16. Maddison M., Soosaar K., Mauring T., Mander Ü.: The biomass and nutrient and heavy metal content of cattails and reeds in wastewater treatment wetlands for the production of construction material in Estonia. ‒ Desalination 246: 120-128, 2009. Go to original source...
  17. Matsui T., Tsuchiya T.: Root aerobic respiration and growth characteristics of three Typha species in response to hypoxia. ‒Ecol. Res. 21: 470-475, 2006. Go to original source...
  18. NHDES (New Hampshire Department of Environmental Services): Common Reed Becoming a Common Nuisance. Pp. 2. Environmental Fact Sheet of NHDES, Concord 2018.
  19. Pedersen O., Perata P., Voesenek L.A.C.J.: Flooding and low oxygen responses in plants. ‒ Funct. Plant Biol. 44: iii-vi, 2017. Go to original source...
  20. Rejmankova E.: The role of macrophytes in wetland ecosystems. ‒J. Ecol. Environ. 34: 333-345, 2011. Go to original source...
  21. Sairam R.K., Srivastava G.C., Saxena D.C.: Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes. ‒ Biol. Plantarum 43: 245-251, 2000. Go to original source...
  22. Song U.: Ecological Monitoring and Management of Plant, Soil and Leachate Channel in the Sudokwon Landfill, Korea. Ph.D Thesis. Seoul National University, Korea 2010.
  23. Song U.: Temperature-dependent performance of competitive native and alien invasive plant species. ‒ Acta Oecol. 84: 8-14, 2017. Go to original source...
  24. Song U., Kim E., Bang J.H. et al.: Wetlands are an effective green roof system. ‒ Build. Environ. 66: 141-147, 2013. Go to original source...
  25. Song U., Lee E.J.: Ecophysiological responses of plants after sewage sludge compost applications. ‒ J. Plant Biol. 53: 259-267, 2010. Go to original source...
  26. Song U., Waldman B., Park J.S. et al.: Improving the remediation capacity of a landfill leachate channel by selecting suitable macrophytes. ‒ J. Hydro-Environ. Res. 20: 31-37, 2018. Go to original source...
  27. Spence D.H.N., Chrystal J.: Photosynthesis and zonation of freshwater macrophytes: II. Adaptability of species of deep and shallow water. ‒ New Phytol. 69: 217-227, 1970. Go to original source...
  28. Squires L., van der Valk A.G.: Water-depth tolerances of the dominant emergent macrophytes of the Delta Marsh, Manitoba. ‒ Can. J. Bot. 70: 1860-1867, 1992. Go to original source...
  29. Tiner R.W.: Wetlands of the United States: Current Status and Recent Trends. Pp. 59. National Wetlands Inventory, Fish and Wildlife Service, US Department of the Interior, 1984.
  30. Tulbure M.G., Johnston C.A., Auger D.L.: Rapid invasion of a Great Lakes coastal wetland by non-native Phragmites australis and Typha. ‒ J. Great Lakes Res. 33: 269-279, 2007. Go to original source...
  31. Waters I., Shay J.M.: Effect of water depth on population parameters of a Typha glauca stand. ‒ Can. J. Bot. 70: 349-351, 1992. Go to original source...
  32. White S.D., Deegan B.M., Ganf G.G.: The influence of water level fluctuations on the potential for convective flow in the emergent macrophytes Typha domingensis and Phragmites australis. ‒ Aquat. Bot. 86: 369-376, 2007. Go to original source...
  33. Yamasaki S.: Role of plant aeration in zonation of Zizania latifolia and Phragmites australis. ‒ Aquat. Bot. 18: 287-297, 1984. Go to original source...
  34. Yuan G., Fu H., Zhong J. et al.: Growth and C/N metabolism of three submersed macrophytes in response to water depths. ‒ Environ. Exp. Bot. 122: 94-99, 2016. Go to original source...