Photosynthetica 2021, 59(2):313-326 | DOI: 10.32615/ps.2021.030

How does moderate drought affect quantum yield and the regulation of sugar metabolism at low temperature in durum wheat (Triticum durum L.)?

R. KHALIL1, †, J. TAJTI2, †, K.Á. HAMOW3, K.O. GONDOR2, E. DARKO2, N. ELSAYED1, Z. NAGY4, G. SZALAI2, T. JANDA2, I. MAJLÁTH2
1 Botany Department, Faculty of Science, Benha University, 13518 Benha, Egypt
2 Department of Plant Physiology, Centre for Agricultural Research, ELKH, 2462 Martonvásár, Hungary
3 Plant Protection Institute, Centre for Agricultural Research, ELKH, 1022 Budapest, Hungary
4 Cereal Research Non-Profit Ltd., 6724 Szeged, Hungary

Currently, limited knowledge is available about the combined effects of drought and light in case of cold stress. The investigation of quantum yield kinetics may help understand how plants utilize light under adverse environmental conditions. In the present study, mild drought helped preserve quantum yield in durum wheat (Triticum durum L.). The time necessary to reach the steady-state actual quantum yield corresponded with the cold sensitivity. Possible underlying mechanisms induced by drought, such as the reduction of malondialdehyde content, accumulation of D-sorbit, and glycine betaine, may have protected photosynthetic apparatus and integrity of light reactions. Low sucrose content at normal growth light might have caused stomatal closing and promoted photorespiration. In contrast to growth light, low light and moderate drought positively affected the sucrose accumulation and maintained glycolysis and energy production at low temperature. Present results emphasized the role of moderate drought as a sufficient acclimation factor against cold in durum wheat.

Additional key words: cold acclimation; durum wheat; moderate drought; photoprotection; sugar metabolism; tricarboxylic acid cycle.

Received: February 17, 2021; Revised: April 17, 2021; Accepted: May 10, 2021; Prepublished online: May 26, 2021; Published: June 29, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
KHALIL, R., TAJTI, J., HAMOW, K.Á., GONDOR, K.O., DARKO, E., ELSAYED, N., ... MAJLÁTH, I. (2021). How does moderate drought affect quantum yield and the regulation of sugar metabolism at low temperature in durum wheat (Triticum durum L.)? Photosynthetica59(2), 313-326. doi: 10.32615/ps.2021.030
Download citation

Supplementary files

Download fileKhalil_2699_supplement_-_Table_3S.xlsx

File size: 23.51 kB

Download fileKhalil_2699_supplement_-_Table_1S.xlsx

File size: 11.03 kB

Download fileKhalil_2699_supplement_-_Table_2S.xlsx

File size: 36.79 kB

Download fileKhalil_2699_supplement_-_Figs._1S-4S.docx

File size: 1.64 MB

References

  1. Ahmad P., Jaleel C.A., Salem M.A. et al.: Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. - Crit. Rev. Biotechnol. 30: 161-175, 2010. Go to original source...
  2. Ahmad R., Lim C.J., Kwon S.Y.: Glycine betaine: a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. - Plant Biotechnol. Rep. 7: 49-57, 2013. Go to original source...
  3. Ali Q., Ali S., Iqbal N. et al.: Alpha-tocopherol fertigation confers growth physio-biochemical and qualitative yield enhancement in field grown water deficit wheat (Triticum aestivum L.). - Sci. Rep.-UK 9: 12924, 2019. Go to original source...
  4. Amin B., Mahleghah G., Mahmood H.M.R., Hossein M.: Evaluation of interaction effect of drought stress with ascorbate and salicylic acid on some of physiological and biochemical parameters in okra (Hibiscus esculentus L.). - Res. J. Biol. Sci. 4: 380-387, 2009.
  5. Ashraf M., Akram N.A., Al-Qurainy F., Foolad M.R.: Drought tolerance: roles of organic osmolytes, growth regulators, and mineral nutrients. - Adv. Agron. 111: 249-296, 2011. Go to original source...
  6. Bates G.W., Rosenthal D.M., Sun J. et al.: A comparative study of the Arabidopsis thaliana guard-cell transcriptome and its modulation by sucrose. - PLoS ONE 7: e49641, 2012. Go to original source...
  7. Beck E.H., Fettig S., Knake C. et al.: Specific and unspecific responses of plants to cold and drought stress. - J. Biosci. 32: 501-510, 2007. Go to original source...
  8. Bortolo T.D.S.C., Marchiosi R., Viganó J. et al.: Trans-aconitic acid inhibits the growth and photosynthesis of Glycine max. - Plant Physiol. Bioch. 132: 490-496, 2018. Go to original source...
  9. Carillo P., Parisi D., Woodrow P. et al.: Salt-induced accumulation of glycine betaine is inhibited by high light in durum wheat. - Funct. Plant Biol. 38: 139-150, 2011. Go to original source...
  10. Chan T., Shimizu Y., Pospíıil P. et al.: Quality control of photo-system II: Lipid peroxidation accelerates photoinhibition under excessive illumination. - PLoS ONE 7: e52100, 2012. Go to original source...
  11. Chemikosova S.B., Pavlencheva N.V., Gur'yanov O.P., Gorshkova T.A.: The effect of soil drought on the phloem fiber development in long-fiber flax. - Russ. J. Plant Physiol. 53: 656-662, 2006. Go to original source...
  12. Choudhury N.K., Behera R.K.: Photoinhibition of photosynthesis: Role of carotenoids in photoprotection of chloroplast constituents. - Photosynthetica 39: 481-488, 2001. Go to original source...
  13. Cornic G., Briantais J.-M.: Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during drought stress. - Planta 183: 178-184, 1991. Go to original source...
  14. Cornic G., Fresneau C.: Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. - Ann. Bot.-London 89: 887-894, 2002. Go to original source...
  15. Cruz de Carvalho M.H.: Drought stress and reactive oxygen species: production, scavenging and signaling. - Plant Signal. Behav. 3: 156-165, 2008.
  16. Dħbrowski P., Baczewska-Dħbrowska A.H., Kalaji H.M. et al.: Exploration of chlorophyll a fluorescence and plant gas exchange parameters as indicators of drought tolerance in perennial ryegrass. - Sensors-Basel 19: 2736, 2019. Go to original source...
  17. de Campos M.K.F., de Carvalho K., de Souza F.S. et al.: Drought tolerance and antioxidant enzymatic activity in transgenic 'Swingle' citrumelo plants overaccumulating proline. - Environ. Exp Bot. 72: 242-250, 2011. Go to original source...
  18. Dias D.A., Hill C.B., Jayasinghe N.S. et al.: Quantitative profiling of polar primary metabolites of two chickpea cultivars with contrasting responses to salinity. - J. Chromatogr. B 1000: 1-13, 2015. Go to original source...
  19. Evers D., Lefèvre I., Legay S. et al.: Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. - J. Exp. Bot. 61: 2327-2343, 2010. Go to original source...
  20. Fariduddin Q., Varshney P., Yusuf M. et al.: Dissecting the role of glycine betaine in plants under abiotic stress. - Plant Stress 7: 8-18, 2013. Go to original source...
  21. Fiehn O.: Metabolomics - the link between genotypes and phenotypes. - Plant Mol. Biol. 48: 155-171, 2002. Go to original source...
  22. Flagella Z., Pastore D., Campanile R.G., Di Fonzo N.: Photochemical quenching of chlorophyll fluorescence and drought tolerance in different durum wheat (Triticum durum) cultivars. - J. Agr. Sci. 122: 183-192, 1994. Go to original source...
  23. Giri J.: Glycinebetaine and abiotic stress tolerance in plants. - Plant Signal. Behav. 6: 1746-1751, 2011. Go to original source...
  24. Grieve C.M., Grattan S.R.: Rapid assay for determination of water soluble quaternary ammonium compounds. - Plant Soil 70: 303-307, 1983. Go to original source...
  25. Gu H., Lu M., Zhang Z. et al.: Metabolic process of raffinose family oligosaccharides during cold stress and recovery in cucumber leaves. - J. Plant Physiol. 224-225: 112-120, 2018. Go to original source...
  26. Guo R., Shi L., Jiao Y. et al.: Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings. - AoB Plants 10: ply016, 2018. Go to original source...
  27. Hussain H.A., Hussain S., Khaliq A. et al.: Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. - Front. Plant Sci. 9: 393, 2018. Go to original source...
  28. Igamberdiev A.U., Kleczkowski L.A.: The glycerate and phosphorylated pathways of serine synthesis in plants: the branches of plant glycolysis linking carbon and nitrogen metabolism. - Front. Plant Sci. 9: 318, 2018. Go to original source...
  29. Janda T., Majláth I., Szalai G.: Interaction of temperature and light in the development of freezing tolerance in plants. - J. Plant Growth Regul. 33: 460-469, 2014. Go to original source...
  30. Janda T., Tajti J., Hamow K.Á. et al.: Acclimation of photo-synthetic processes and metabolic responses to elevated temperatures in cereals. - Physiol. Plantarum 171: 217-231, 2021. Go to original source...
  31. Jiménez S., Dridi J., Gutiérrez D. et al.: Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. - Tree Physiol. 33: 1061-1075, 2013. Go to original source...
  32. Juvany M., Müller M., Pintó-Marijuan M., Munné-Bosch S.: Sex-related differences in lipid peroxidation and photoprotection in Pistacia lentiscus. - J. Exp. Bot. 65: 1039-1049, 2014. Go to original source...
  33. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  34. Karabudak T., Bor M., Özdemir F., Türkan İ.: Glycine betaine protects tomato (Solanum lycopersicum) plants at low temperature by inducing fatty acid desaturase7 and lipoxygenase gene expression. - Mol. Biol. Rep. 41: 1401-1410, 2014. Go to original source...
  35. Kaya C., Ashraf M., Wijaya L., Ahmad P.: The putative role of endogenous nitric oxide in brassinosteroid-induced antioxidant defence system in pepper (Capsicum annuum L.) plants under water stress. - Plant Physiol. Bioch. 143: 119-128, 2019. Go to original source...
  36. Kaya C., Şenbayram M., Akram N.A. et al.: Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.). - Sci. Rep.-UK 10: 6432, 2020. Go to original source...
  37. Keech O., Gardeström P., Kleczkowski L.A., Rouhier N.: The redox control of photorespiration: from biochemical and physiological aspects to biotechnological considerations. - Plant Cell Environ. 40: 553-569, 2017. Go to original source...
  38. Keren N., Krieger-Liszkay A.: Photoinhibition: molecular mechanisms and physiological significance. - Physiol. Plantarum 142: 1-5, 2011. Go to original source...
  39. Klughammer C., Schreiber U.: Saturation Pulse method for assessment of energy conversion in PS I. - PAM Appl. Notes 1: 11-14, 2008.
  40. Kohli S.K., Khanna K., Bhardwaj R. et al.: Assessment of subcellular ROS and NO metabolism in higher plants: multifunctional signaling molecules. - Antioxidants 8: 641, 2019. Go to original source...
  41. Kramer D.M., Avenson T.J., Edwards G.E.: Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. - Trends Plant Sci. 9: 349-357, 2004. Go to original source...
  42. Krasensky J., Jonak C.: Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. -J. Exp. Bot. 63: 1593-1608, 2012. Go to original source...
  43. Leverne L., Krieger-Liszkay A.: Moderate drought stress stabi-lizes the primary quinone acceptor QA and the secondary quinone acceptor QB in photosystem II. - Physiol. Plantarum 171: 260-267, 2021. Go to original source...
  44. Li R.H., Guo P.P., Baum M. et al.: Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. - Agr. Sci. China 5: 751-757, 2006. Go to original source...
  45. Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. - Method. Enzymol. 148: 350-382, 1987. Go to original source...
  46. Loreti E., Amedo A., Perata P.: Glucose and disaccharide mechanisms modulate the expression of α-amylase in barley embryos. - Plant Physiol. 123: 939-948, 2000. Go to original source...
  47. Ma Q.Q., Wang W., Li Y.H. et al.: Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. - J. Plant Physiol. 163: 165-175, 2006. Go to original source...
  48. Mahajan S., Tuteja N.: Cold, salinity and drought stresses: An overview. - Arch. Biochem. Biophys. 444: 139-158, 2005. Go to original source...
  49. Majláth I., Darko E., Palla B. et al.: Reduced light and moderate water deficiency sustain nitrogen assimilation and sucrose degradation at low temperature in durum wheat. - J. Plant Physiol. 191: 149-158, 2016. Go to original source...
  50. Mäkelä P., Kärkkäinen J., Somersalo S.: Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. - Biol. Plantarum 43: 471-475, 2000. Go to original source...
  51. Maruyama K., Urano K., Yoshiwara K. et al.: Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. - Plant Physiol. 164: 1759-1771, 2014. Go to original source...
  52. Mattana M., Biazzi E., Consonni R. et al.: Overexpression of osmyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana. - Physiol. Plantarum 125: 212-223, 2005. Go to original source...
  53. Maurino V.G., Engqvist M.K.: 2-hydroxy acids in plant meta-bolism. - In: The Arabidopsis Book. Vol. 13. Pp. e0182. The American Society of Plant Biologists, 2015. Go to original source...
  54. Misra B.B., Acharya B.R., Granot D. et al.: The guard cell metabolome: functions in stomatal movement and global food security. - Front. Plant Sci. 6: 334, 2015. Go to original source...
  55. Mittler R.: Abiotic stress, the field environment and stress combination. - Trends Plant Sci. 11: 15-19, 2006. Go to original source...
  56. Miura K., Furumoto T.: Cold signaling and cold response in plants. - Int. J. Mol. Sci. 14: 5312-5337, 2013. Go to original source...
  57. Nath K., O'Donnell J.P., Lu Y.: Chlorophyll fluorescence for high-throughput screening of plants during abiotic stress, aging, and genetic perturbation. - In: Hou H., Najafpour M., Moore G., Allakhverdiev S. (ed.): Photosynthesis: Structures, Mechanisms, and Applications. Pp. 261-273. Springer, Cham 2017. Go to original source...
  58. Nejadsadeghi L., Maali-Amiri R., Zeinali H. et al.: Membrane fatty acid compositions and cold-induced response in tetraploid and hexaploid wheats. - Mol. Biol. Rep. 42: 363-372, 2015. Go to original source...
  59. Nishiyama Y., Murata N.: Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. - Appl. Microbiol. Biot. 98: 8777-8796, 2014. Go to original source...
  60. Nishizawa-Yokoi A., Yabuta Y., Shigeoka S.: The contribution of carbohydrates including raffinose family oligosaccharides and sugar alcohols to protection of plant cells from oxidative damage. - Plant Signal. Behav. 3: 1016-1018, 2008. Go to original source...
  61. Palma F., Carvajal F., Lluch C. et al.: Changes in carbohydrate content in zucchini fruit (Cucurbita pepo L.) under low temperature stress. - Plant Sci. 217-218: 78-86, 2014. Go to original source...
  62. Pandey P., Irulappan V., Bagavathiannan M.V., Senthil-Kumar M.: Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. - Front. Plant Sci. 8: 537, 2017. Go to original source...
  63. Pandey P., Ramegowda V., Senthil-Kumar M.: Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. - Front. Plant Sci. 6: 723, 2015. Go to original source...
  64. Panikulangara T.J., Eggers-Schumacher G., Wunderlich M. et al.: Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. - Plant Physiol. 136: 3148-3158, 2004. Go to original source...
  65. Papageorgiou G.C., Murata N.: The unusually strong stabilizing effects of glycinebetaine on the structure and function of the oxygen-evolving photosystem II complex. - Photosynth. Res. 44: 243-252, 1995. Go to original source...
  66. Pirzadah B.T., Malik B., Rehman U.R. et al.: Signaling in response to cold stress. - In: Hakeem R.K., Rehman U.R., Tahir I. (ed.): Plant Signaling: Understanding the Molecular Crosstalk. Pp. 193-226. Springer, New Delhi 2014. Go to original source...
  67. Pizarro L., Stange C.: Light-dependent regulation of carotenoid biosynthesis in plants. - Cienc. Inv. Agr. 36: 143-162, 2009. Go to original source...
  68. Raja V., Qadir S.U., Alyemeni M.N., Ahmad P.: Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. - 3 Biotech 10: 208, 2020. Go to original source...
  69. Ruelland E., Vaultier M.-N., Zachowski A., Hurry V.: Cold signalling and cold acclimation in plants. - Adv. Bot. Res. 49: 36-150, 2009. Go to original source...
  70. Savvides A., Shawkat A., Tester M., Fotopoulos V.: Chemical priming of plants against multiple abiotic stresses: Mission possible? - Trends Plant Sci. 21: 329-340, 2016. Go to original source...
  71. Saxena S.C., Kaur H., Verma P. et al.: Osmoprotectants: potential for crop improvement under adverse conditions. - In: Tuteja N., Singh Gill S. (ed.): Plant Acclimation to Environmental Stress. Pp. 197-232. Springer, New York 2013. Go to original source...
  72. Sharma P., Jha A.B., Dubey R.S., Pessarakli M.: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. - J. Bot. 2012: 217037, 2012. Go to original source...
  73. Sinha A.K., Hofmann M.G., Römer U. et al.: Metabolizable and non-metabolizable sugars activate different signal trans-duction pathways in tomato. - Plant Physiol. 128: 1480-1489, 2002. Go to original source...
  74. Smeekens S., Ma J.K., Hanson J., Rolland F.: Sugar signals and molecular networks controlling plant growth. - Curr. Opin. Plant Biol. 13: 273-278, 2010. Go to original source...
  75. Sohag A.A.M., Tahjib-Ul-Arif M., Brestic M. et al.: Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. - Plant Soil Environ. 66: 7-13, 2020. Go to original source...
  76. Taji T., Ohsumi C., Iuchi S. et al.: Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. - Plant J. 29: 417-426, 2002. Go to original source...
  77. Takahashi S., Murata N.: How do environmental stresses accelerate photoinhibition? - Trends Plant Sci. 13: 178-182, 2008. Go to original source...
  78. Thomas J.C., Perron M., Davies E.C.: Genetic responsiveness to copper in the ice plant, Mesembryanthemum crystallinum. - Plant Sci. 167: 259-266, 2004. Go to original source...
  79. Thompson J.F., Schaefer S.C., Madison J.T.: Role of aconitate isomerase in trans-aconitate accumulation in plants. - J. Agr. Food Chem. 45: 3684-3688, 1997. Go to original source...
  80. Wang G.P., Zhang X.Y., Li F. et al.: Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. - Photosynthetica 48: 117-126, 2010. Go to original source...
  81. Wang X.J., Sun D.L., Bian N.F. et al.: Metabolic changes of peanut (Arachis hypogaea L.) buds in response to low temperature (LT). - S. Afr. J. Bot. 111: 341-345, 2017. Go to original source...
  82. Yun Z., Gao H., Liu P. et al.: Comparative proteomic and metabolomic profiling of citrus fruit with enhancement of disease resistance by postharvest heat treatment. - BMC Plant Biol. 13: 44, 2013. Go to original source...
  83. Zhang J., Wang X., Yu O. et al.: Metabolic profiling of strawberry (Fragaria × ananassa Duch.) during fruit development and maturation. - J. Exp. Bot. 62: 1103-1118, 2011. Go to original source...
  84. Zhang J., Yang D., Li M., Shi L.: Metabolic profiles reveal changes in wild and cultivated soybean seedling leaves under salt stress. - PLoS ONE 11: e0159622, 2016. Go to original source...
  85. Zuther E., Büchel K., Hundertmark M. et al.: The role of raffinose in the cold acclimation of Arabidopsis thaliana. - FEBS Lett. 576: 169-173, 2004. Go to original source...