Photosynthetica 2021, 59(2):337-348 | DOI: 10.32615/ps.2021.029

Ethylene-dependent effects of fusaric acid on the photosynthetic activity of tomato plants

N. IQBAL, Z. CZÉKUS, A. ÖRDÖG, P. POÓR
Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary

Fusaric acid (FA) is one of the potential toxins produced by pathogenic Fusarium species which exerts oxidative stress and cell death in plants. In this work, the effects of different concentrations of FA were investigated on the photosynthetic activity in leaves of wild type and Never ripe (Nr) tomato plants to reveal the potential role of ethylene under mycotoxin exposure. FA induced a significant ethylene emission from leaves in a concentration- and time-dependent manner. FA (1 mM) decreased the maximal and effective quantum yields of PSII and PSI in both tomato genotypes but photoprotective processes, such as the nonphotochemical quenching and the cyclic electron flow, were activated more effectively in Nr plants. However, the lipid peroxidation was higher in leaves of Nr. Our result confirmed that Nr plants were more sensitive to FA phytotoxicity suggesting the key role of ethylene in the activation of defense responses.

Additional key words: assimilation; electrolyte leakage; lipid peroxidation; mycotoxin; photosystem; stomatal conductance.

Received: January 20, 2021; Revised: April 19, 2021; Accepted: April 23, 2021; Prepublished online: June 11, 2021; Published: June 29, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
IQBAL, N., CZÉKUS, Z., ÖRDÖG, A., & POÓR, P. (2021). Ethylene-dependent effects of fusaric acid on the photosynthetic activity of tomato plants. Photosynthetica59(2), 337-348. doi: 10.32615/ps.2021.029
Download citation

References

  1. Asai T., Stone J.M., Heard J.E. et al.: Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. - Plant Cell. 12: 1823-1835, 2000. Go to original source...
  2. Bani M., Rispail N., Evidente A. et al.: Identification of the main toxins isolated from Fusarium oxysporum f. sp. pisi race 2 and their relation with isolates' pathogenicity. - J. Agr. Food Chem. 62: 2574-2580, 2014. Go to original source...
  3. Borbély P., Bajkán S., Poór P., Tari I.: Exogenous 1-amino-cyclopropane-1-carboxylic acid controls photosynthetic activity, accumulation of reactive oxygen or nitrogen species and macroelement content in tomato in long-term experiments. - J. Plant Growth Regul. 38: 1110-1126, 2019. Go to original source...
  4. Borbély P., Poór P., Tari I.: Changes in physiological and photosynthetic parameters in tomato of different ethylene status under salt stress: Effects of exogenous 1-aminocyclopropane-1-carboxylic acid treatment and the inhibition of ethylene signalling. - Plant Physiol. Bioch. 156: 345-356, 2020. Go to original source...
  5. Bouizgarne B., El-Maarouf-Bouteau H., Frankart C. et al.: Early physiological responses of Arabidopsis thaliana cells to fusaric acid: toxic and signalling effects. - New Phytol. 169: 209-218, 2006. Go to original source...
  6. Brown D.W., Butchko R.A.E., Busman M., Proctor R.H.: Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides. - Fungal Genet. Biol. 49: 521-532, 2012. Go to original source...
  7. Ceusters J., Van de Poel B.: Ethylene exerts species-specific and age-dependent control of photosynthesis. - Plant Physiol. 176: 2601-2612, 2018. Go to original source...
  8. Chang C.: Q&A: How do plants respond to ethylene and what is its importance? - BMC Biol. 14: 7, 2016. Go to original source...
  9. Chen L., Jia H., Tian Q. et al.: Protecting effect of phosphorylation on oxidative damage of D1 protein by down-regulating the production of superoxide anion in photosystem II membranes under high light. - Photosynth. Res. 112: 141-148, 2012. Go to original source...
  10. Chen S., Kang Y., Zhang M. et al.: Differential sensitivity to the potential bioherbicide tenuazonic acid probed by the JIP-test based on fast chlorophyll fluorescence kinetics. - Environ. Exp. Bot. 112: 1-15, 2015. Go to original source...
  11. Chen S., Strasser R.J., Qiang S.: In vivo assessment of effect of phytotoxin tenuazonic acid on PSII reaction centers. - Plant Physiol. Bioch. 84: 10-21, 2014. Go to original source...
  12. Chen S., Yin C., Qiang S. et al.: Chloroplastic oxidative burst induced by tenuazonic acid, a natural photosynthesis inhibitor, triggers cell necrosis in Eupatorium adenophorum Spreng. - BBA-Bioenergetics 1797: 391-405, 2010. Go to original source...
  13. Chen Z., Gallie D.R.: Ethylene regulates energy-dependent non-photochemical quenching in Arabidopsis through repression of the xanthophyll cycle. - PLoS ONE 10: e0144209, 2015. Go to original source...
  14. Choudhury N.K., Behera R.K.: Photoinhibition of photosynthesis: role of carotenoids in photoprotection of chloroplast constituents. - Photosynthetica 39: 481-488, 2001. Go to original source...
  15. Coll N.S., Epple P., Dangl J.L.: Programmed cell death in the plant immune system. - Cell Death Differ. 18: 1247-1256, 2011. Go to original source...
  16. Czarnocka W., Karpiński S.: Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. - Free Radical Bio. Med. 122: 4-20, 2018. Go to original source...
  17. Czékus Z., Farkas M., Bakacsy L. et al.: Time-dependent effects of bentazon application on the key antioxidant enzymes of soybean and common ragweed. - Sustainability-Basel 12: 3872, 2020. Go to original source...
  18. Desikan R., Last K., Harrett-Williams R. et al.: Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. - Plant J. 47: 907-916, 2006. Go to original source...
  19. Dong X., Ling N., Wang M. et al.: Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants. - Plant Physiol. Bioch. 60: 171-179, 2012. Go to original source...
  20. Eagles E.J., Benstead R., MacDonald S. et al.: Impacts of the mycotoxin zearalenone on growth and photosynthetic responses in laboratory populations of freshwater macro-phytes (Lemna minor) and microalgae (Pseudokirchneriella subcapitata). - Ecotox. Environ. Safe. 169: 225-231, 2019. Go to original source...
  21. Edelman M., Mattoo A.K.: D1-protein dynamics in photosystem II: the lingering enigma. - Photosynth. Res. 98: 609-620, 2008. Go to original source...
  22. Ederli L., Pasqualini S., Batini P., Antonielli M.: Photoinhibition and oxidative stress: effects on xanthophyll cycle, scavenger enzymes and abscisic acid content in tobacco plants. - J. Plant Physiol. 151: 422-428, 1997. Go to original source...
  23. Fagundes-Nacarath I.R.F., Debona D., Rodrigues F.A.: Oxalic acid-mediated biochemical and physiological changes in the common bean-Sclerotinia sclerotiorum interaction. - Plant Physiol. Bioch. 129: 109-121, 2018. Go to original source...
  24. Farooq M.A., Niazi A.K., Akhtar J. et al.: Acquiring control: The evolution of ROS-induced oxidative stress and redox signaling pathways in plant stress responses. - Plant Physiol. Bioch. 141: 353-369, 2019. Go to original source...
  25. Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. - Plant Physiol. Bioch. 48: 909-930, 2010. Go to original source...
  26. Glazebrook J.: Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. - Annu. Rev. Phytopathol. 43: 205-227, 2005. Go to original source...
  27. Guo Y., Lu Y., Goltsev V. et al.: Comparative effect of tenuazonic acid, diuron, bentazone, dibromothymoquinone and methyl viologen on the kinetics of Chl a fluorescence rise OJIP and the MR820 signal. - Plant Physiol. Bioch. 156: 39-48, 2020. Go to original source...
  28. He J., Yue X., Wang R., Zhang Y.: Ethylene mediates UV-B-induced stomatal closure via peroxidase-dependent hydrogen peroxide synthesis in Vicia faba L. - J. Exp. Bot. 62: 2657-2666, 2011. Go to original source...
  29. Huang W., Zhang S.B., Cao K.F.: Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature. - Plant Cell Physiol. 52: 297-305, 2011. Go to original source...
  30. Ivanov B.N., Borisova-Mubarakshina M.M., Kozuleva M.A.: Formation mechanisms of superoxide radical and hydrogen peroxide in chloroplasts, and factors determining the signalling by hydrogen peroxide. - Funct. Plant Biol. 45: 102-110, 2018. Go to original source...
  31. Jahns P., Holzwarth A.R.: The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. - BBA-Bioenergetics 1817: 182-193, 2012. Go to original source...
  32. Jiang C., Belfield E.J., Cao Y. et al.: An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. - Plant Cell 25: 3535-3552, 2013. Go to original source...
  33. Jiao J., Sun L., Zhou B. et al.: Hydrogen peroxide production and mitochondrial dysfunction contribute to the fusaric acid-induced programmed cell death in tobacco cells. - J. Plant Physiol. 171: 1197-1203, 2014. Go to original source...
  34. Jiao Y., Sun L., Song Y. et al.: AtrbohD and AtrbohF positively regulate abscisic acid-inhibited primary root growth by affecting Ca2+ signalling and auxin response of roots in Arabidopsis. - J. Exp. Bot. 64: 4183-4192, 2013. Go to original source...
  35. Kalaji H.M., Goltsev V., Bosa K. et al.: Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker. - Photosynth. Res. 114: 69-96, 2012. Go to original source...
  36. Kamiyoshihara Y., Tieman D.M., Huber D.J., Klee H.J.: Ligand-induced alterations in the phosphorylation state of ethylene receptors in tomato fruit. - Plant Physiol. 160: 488-497, 2012. Go to original source...
  37. Khan T.A., Yusuf M., Fariduddin Q.: Hydrogen peroxide in regulation of plant metabolism: Signalling and its effect under abiotic stress. - Photosynthetica 56: 1237-1248, 2018. Go to original source...
  38. Klee H., Tieman D.: The tomato ethylene receptor gene family: form and function. - Physiol. Plantarum 115: 336-341, 2002. Go to original source...
  39. Klughammer C., Schreiber U.: An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. - Planta 192: 261-268, 1994. Go to original source...
  40. Klughammer C., Schreiber U.: Saturation pulse method for assessment of energy conversion in PS I. - PAM Appl. Notes 1: 11-14, 2008.
  41. Kurepin L.V., Ivanov A.G., Zaman M. et al.: Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions. - Photosynth. Res. 126: 221-235, 2015. Go to original source...
  42. KuĽniak E.: Effect of fusaric acid on reactive oxygen species and antioxidants in tomato cell culture. - J. Phytopathol. 149: 575-582, 2001. Go to original source...
  43. Lanahan M.B., Yen H.C., Giovannoni J.J., Klee H.J.: The never ripe mutation blocks ethylene perception in tomato. - Plant Cell 6: 521-530, 1994. Go to original source...
  44. Lei Y.B., Zheng Y.L., Dai K.J. et al.: Different responses of photosystem I and photosystem II in three tropical oilseed crops exposed to chilling stress and subsequent recovery. - Trees-Struct. Funct. 28: 923-933, 2014. Go to original source...
  45. Lievens B., Rep M., Thomma B.P.H.J.: Recent developments in the molecular discrimination of formae speciales of Fusarium oxysporum. - Pest Manag. Sci. 64: 781-788, 2008. Go to original source...
  46. Liu M., Pirrello J., Chervin C. et al.: Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. - Plant Physiol. 169: 2380-2390, 2015. Go to original source...
  47. Liu Y.F., Qi M.F., Li T.L.: Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. - Plant Sci. 196: 8-17, 2012. Go to original source...
  48. Marzano M., Gallo A., Altomare C.: Improvement of biocontrol efficacy of Trichoderma harzianum vs. Fusarium oxysporum f. sp. lycopersici through UV-induced tolerance to fusaric acid. - Biol. Control 67: 397-408, 2013. Go to original source...
  49. McElrone A.J., Sherald J.L., Forseth I.N.: Interactive effects of water stress and xylem-limited bacterial infection on the water relations of a host vine. - J. Exp. Biol. 54: 419-430, 2003. Go to original source...
  50. Mersmann S., Bourdais G., Rietz S., Robatzek S.: Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. - Plant Physiol. 154: 391-400, 2010. Go to original source...
  51. Miyake C.: Alternative electron flows (water-water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions. - Plant Cell Physiol. 51: 1951-1963, 2010. Go to original source...
  52. Munekage Y., Hojo M., Meurer J. et al.: PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. - Cell 110: 361-371, 2002. Go to original source...
  53. Nascimento V.L., Pereira A.M., Pereira A.S. et al.: Physiological and metabolic bases of increased growth in the tomato ethylene-insensitive mutant Never ripe: extending ethylene signaling functions. - Plant Cell Rep., 2020. Go to original source...
  54. Noctor G., Reichheld J.P., Foyer C.H.: ROS-related redox regulation and signaling in plants. - Semin. Cell Dev. Biol. 80: 3-12, 2018. Go to original source...
  55. Overmyer K., Brosché M., Kangasjärvi J.: Reactive oxygen species and hormonal control of cell death. - Trends Plant Sci. 8: 335-342, 2003. Go to original source...
  56. Pare P.W., Farag M.A., Krishnamachari V. et al.: Elicitors and priming agents initiate plant defense responses. - Photosynth. Res. 85: 149-159, 2005. Go to original source...
  57. Partelli F.L., Batista-Santos P., Scotti-Campos P. et al.: Characterization of the main lipid components of chloroplast membranes and cold induced changes in Coffea spp. - Environ. Exp. Bot. 74: 194-204, 2011. Go to original source...
  58. Plett J.M., Cvetkovska M., Makenson P. et al.: Arabidopsis ethylene receptors have different roles in Fumonisin B1-induced cell death. - Physiol. Mol. Plant Pathol. 74: 18-26, 2009. Go to original source...
  59. Poór P., Borbély P., Bódi N. et al.: Effects of salicylic acid on photosynthetic activity and chloroplast morphology under light and prolonged darkness. - Photosynthetica 57: 367-376, 2019. Go to original source...
  60. Poór P., Gémes K., Horváth F. et al.: Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. - Plant Biol. 13: 105-114, 2011. Go to original source...
  61. Poór P., Kovács J., Borbély P. et al.: Salt stress-induced production of reactive oxygen and nitrogen species and cell death in the ethylene receptor mutant Never ripe and wild type tomato roots. - Plant Physiol. Bioch. 97: 313-322, 2015. Go to original source...
  62. Poór P., Kovács J., Szopkó D., Tari I.: Ethylene signaling in salt stress- and salicylic acid-induced programmed cell death in tomato suspension cells. - Protoplasma 250: 273-284, 2013. Go to original source...
  63. Poór P., Tari I.: Regulation of stomatal movement and photosynthetic activity in guard cells of tomato abaxial epidermal peels by salicylic acid. - Funct. Plant Biol. 39: 1028-1037, 2012. Go to original source...
  64. Pospíąil P.: Molecular mechanisms of production and sca-venging of reactive oxygen species by photosystem II. - BBA-Bioenergetics 1817: 218-231, 2012. Go to original source...
  65. Qin X., Zhang R.X., Ge S. et al.: Sphingosine kinase AtSPHK1 functions in fumonisin B1-triggered cell death in Arabi-dopsis. - Plant Physiol. Bioch. 119: 70-80, 2017. Go to original source...
  66. Radić S., Domijan A.-M., Ljubimir K.G. et al.: Toxicity of nanosilver and fumonisin B1 and their interactions on duckweed (Lemna minor L.). - Chemosphere 229: 86-93, 2019. Go to original source...
  67. Rani T.D., Rajan S., Lavanya L. et al.: An overview of fusaric acid production. - Adv. Biotech 8: 18-22, 2009.
  68. Repka V., Fiala R., Pavlovkin J.: Role of ethylene and phospholipid-mediated signalling in mycotoxin-induced programmed cell death in the apical part of maize roots. - Biologia 72: 378-387, 2017. Go to original source...
  69. Romero-Aranda R., Soria T., Cuartero J.: Tomato plant-water uptake and plant-water relationships under saline growth conditions. - Plant Sci. 160: 265-272, 2001. Go to original source...
  70. Sapko O.A., Utarbaeva A.S., Makulbek S. et al.: Effect of fusaric acid on prooxidant and antioxidant properties of the potato cell suspension culture. - Russ. J. Plant Physl+ 58: 828-835, 2011. Go to original source...
  71. Shakeel S.N., Wang X., Binder B.M., Schaller G.E.: Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. - AoB Plants 5: plt010, 2013. Go to original source...
  72. Shikanai T.: Cyclic electron transport around photosystem I: Genetic approaches. - Annu. Rev. Plant Biol. 58: 199-217, 2007. Go to original source...
  73. Shikanai T.: Central role of cyclic electron transport around photosystem I in the regulation of photosynthesis. - Curr. Opin. Biotech. 26: 25-30, 2014. Go to original source...
  74. Sims D.A., Gamon J.A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. - Remote Sens. Environ. 81: 337-354, 2002. Go to original source...
  75. Singh V.K., Singh H.B., Upadhyay R.S.: Role of fusaric acid in the development of 'Fusarium wilt' symptoms in tomato: Physiological, biochemical and proteomic perspectives. - Plant Physiol. Bioch. 118: 320-332, 2017. Go to original source...
  76. Singh V.K., Upadhyay R.S.: Fusaric acid induced cell death and changes in oxidative metabolism of Solanum lycopersicum L. - Bot. Stud. 55: 66, 2014. Go to original source...
  77. Srinivas C., Devi D.N., Murthy K.N. et al.: Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity - A review. - Saudi J. Biol. Sci. 26: 1315-1324, 2019. Go to original source...
  78. Stępień Ł., Koczyk G., Wa¶kiewicz A.: Diversity of Fusarium species and mycotoxins contaminating pineapple. - J. Appl. Genet. 54: 367-380, 2013. Go to original source...
  79. Sunil B., Talla S.K., Aswani V., Raghavendra A.S.: Optimization of photosynthesis by multiple metabolic pathways involving interorganelle interactions: resource sharing and ROS maintenance as the bases. - Photosynth. Res. 117: 61-71, 2013. Go to original source...
  80. Sutherland M.L., Pegg G.F.: The basis of host recognition in Fusarium oxysporum f. sp. lycopersici. - Physiol. Mol. Plant Pathol. 40: 423-436, 1992. Go to original source...
  81. Takahashi S., Milward S.E., Fan D.-Y. et al.: How does cyclic electron flow alleviate photoinhibition in Arabidopsis? - Plant Physiol. 149: 1560-1567, 2009. Go to original source...
  82. Trobacher C.P.: Ethylene and programmed cell death in plants. - Botany 87: 757-769, 2009. Go to original source...
  83. Wang H., Liang X., Wan Q. et al.: Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. - Planta 230: 293-307, 2009. Go to original source...
  84. Wang M., Xiong Y., Ling N. et al.: Detection of the dynamic response of cucumber leaves to fusaric acid using thermal imaging. - Plant Physiol. Bioch. 66: 68-76, 2013b. Go to original source...
  85. Wang P.C., Du Y.Y., Zhao X.L. et al.: The MPK6-ERF6-ROS-responsive cis-acting element7/GCC box complex modulates oxidative gene transcription and the oxidative response in Arabidopsis. - Plant Physiol. 161: 1392-1408, 2013a. Go to original source...
  86. Wang R., Huang J., Liang A. et al.: Zinc and copper enhance cucumber tolerance to fusaric acid by mediating its distribution and toxicity and modifying the antioxidant system. - Int. J. Mol. Sci. 21: 3370, 2020. Go to original source...
  87. Wilhelmová N., Procházková D., ©indelářová M., ©indelář L.: Photosynthesis in leaves of Nicotiana tobaccum L. infected with tobacco mosaic virus. - Photosynthetica 43: 597-602, 2005. Go to original source...
  88. Wu H.S., Bao W., Liu D.Y. et al.: Effect of fusaric acid on biomass and photosynthesis of watermelon seedlings leaves. -Caryologia 61: 258-268, 2008. Go to original source...
  89. Wu J.X., Wu J.L., Yin J. et al.: Ethylene modulates sphingolipid synthesis in Arabidopsis. - Front. Plant Sci. 6: 1122, 2015. Go to original source...
  90. Wu N., Mao H.T., Chen M.Y. et al.: Different responses of photosystem and antioxidant defense system to three environmental stresses in wheat seedlings. - Photosynthetica 58: 87-99, 2020. Go to original source...
  91. Xia X.J., Zhou Y.H., Shi K. et al.: Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. - J. Exp. Bot. 66: 2839-2856, 2015. Go to original source...
  92. Xiang M., Chen S., Wang L. et al.: Effect of vulculic acid produced by Nimbya alternantherae on the photosynthetic apparatus of Alternanthera philoxeroides. - Plant Physiol. Bioch. 65: 81-88, 2013. Go to original source...
  93. Xing F., Li Z., Sun A., Xing D.: Reactive oxygen species promote chloroplast dysfunction and salicylic acid accumulation in fumonisin B1-induced cell death. - FEBS Lett. 587: 2164-2172, 2013. Go to original source...
  94. Yen H.C., Lee S., Tanksley S.D. et al.: The tomato Never-ripe locus regulates ethylene-inducible gene expression and is linked to a homolog of the Arabidopsis ETR1 gene. - Plant Physiol. 107: 1343-1353, 1995. Go to original source...
  95. Zavafer A., González-Solís A., Palacios-Bahena S. et al.: Orga-nized disassembly of photosynthesis during programmed cell death mediated by long chain bases. - Sci. Rep.-UK 10: 10360, 2020. Go to original source...
  96. Zhang G., Liu Y., Ni Y. et al.: Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves. - PLoS ONE 9: e97322, 2014. Go to original source...