Photosynthetica 2021, 59(2):349-360 | DOI: 10.32615/ps.2021.032

Role of beneficial elements in plants: implications for the photosynthetic process

E. LO PICCOLO1, C. CECCANTI1, L. GUIDI1, 2, M. LANDI1, 2
1 Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
2 CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy

Essential macro- and microelements availability strictly influences photosynthetic process as well as the overall plant status. Besides essential macro- and micronutrients, a group of other elements described as 'beneficial' has been proposed to ameliorate plant performances under optimal and/or stressful conditions. The first explanation of the term 'essential', as suggested by Arnon and Stout in 1939, defined beneficial elements as not essentials since they are not necessary for plants to complete their life cycle. However, at low amounts, they can exert promoting effects on plant performances, including photosynthesis. In this review, we summarize the positive effect of seven beneficial elements (Se, Si, Na, I, Ti, Ce, and La) on plant photosynthetic processes to depict a clear picture of the influences of these beneficial elements on photosynthesis.

Additional key words: ameliorative role; nonessential elements; nutrients; plant nutrition; stress condition.

Received: April 21, 2021; Revised: June 7, 2021; Accepted: June 16, 2021; Prepublished online: June 25, 2021; Published: June 29, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
LO PICCOLO, E., CECCANTI, C., GUIDI, L., & LANDI, M. (2021). Role of beneficial elements in plants: implications for the photosynthetic process. Photosynthetica59(2), 349-360. doi: 10.32615/ps.2021.032
Download citation

References

  1. Aggarwal A., Sharma I., Tripati B.N. et al.: Metal toxicity and photosynthesis. - In: Ithoh S., Mohanty P., Guruprasad K.N. (ed.): Photosynthesis: Overviews on Recent Progress & Future Perspectives. Pp. 229-236. IK International Publishing House, New Delhi 2012.
  2. Alves L.R., Rossatto D.R., Rossi M.L. et al.: Selenium improves photosynthesis and induces ultrastructural changes but does not alleviate cadmium-stress damages in tomato plants. - Protoplasma 257: 597-605, 2020. Go to original source...
  3. Alyemeni M.N., Ahanger M.A., Wijaya L. et al.: Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chloro- phyll fluorescence, osmolyte accumulation, and antioxidant system. - Protoplasma 255: 459-469, 2018. Go to original source...
  4. Amirabad S.A., Behtash F., Vafaee Y.: Selenium mitigates cadmium toxicity by preventing oxidative stress and enhancing photosynthesis and micronutrient availability on radish (Raphanus sativus L.) cv. Cherry Belle. - Environ. Sci. Pollut. R. 27: 12476-12490, 2020. Go to original source...
  5. Andrade F.R., da Silva G.N., Guimarães K.C. et al.: Selenium protects rice plants from water deficit stress. - Ecotox. Environ. Safe. 164: 562-570, 2018. Go to original source...
  6. Arnon D.I., Stout P.R.: The essentiality of certain elements in minute quantity for plants with special reference to copper. - Plant Physiol. 14: 371-375, 1939. Go to original source...
  7. Ashraf M.A., Akbar A., Parveen A. et al.: Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress. - Plant Physiol. Bioch. 123: 268-280, 2018. Go to original source...
  8. Avila R.G., Magalhães P.C., da Silva E.M. et al.: Silicon supplementation improves tolerance to water deficiency in sorghum plants by increasing root system growth and improving photosynthesis. - Silicon 12: 2545-2554, 2020. Go to original source...
  9. Balakhnina T.I., Nadezhkina E.S.: Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. - Russ. J. Plant Physiol. 64: 215-223, 2017. Go to original source...
  10. Birbaum K., Brogioli R., Schellenberg M. et al.: No evidence for cerium dioxide nanoparticle translocation in maize plants. - Environ. Sci. Technol. 44: 8718-8723, 2010. Go to original source...
  11. Blasco B., Rios J.J., Leyva R. et al.: Photosynthesis and metabolism of sugars from lettuce plants (Lactuca sativa L. var. longifolia) subjected to biofortification with iodine. - Plant Growth Regul. 65: 137-143, 2011. Go to original source...
  12. Breznik B., Germ M., Gaberscik A., Kreft I.: Combined effects of elevated UV-B radiation and the addition of selenium on common (Fagopyrum esculentum Moench) and tartary [Fagopyrum tataricum (L.) Gaertn.] buckwheat. - Photosynthetica 43: 583-589, 2005. Go to original source...
  13. Broadley M., Brown P., Cakmak I. et al.: Beneficial Elements. -In: Marschner P. (ed.): Marschner's Mineral Nutrition of Higher Plants. Pp. 249-269. Academic Press, Amsterdam 2012. Go to original source...
  14. Brownell P.F., Bielig L.M.: The role of sodium in the conversion of pyruvate to phosphoenolpyruvate in mesophyll chloroplasts of C4 plants. - Funct. Plant Biol. 23: 171-177, 1996. Go to original source...
  15. Castillo-Godina R.G., Foroughbakhch-Pournavab R., Benavides-Mendoza A.: Effect of selenium on elemental concentration and antioxidant enzymatic activity of tomato plants. - J. Agr. Sci. Tech. 18: 233-244, 2016.
  16. Cheng B.T.: The role of iodine, silicon and titanium on manganese toxicity in an acid soil [in the cultivation of tomatoes and cucumber]. - Agrochimica 25: 268-277, 1981.
  17. Choi H.G., Moon B.Y., Bekhzod K. et al.: Effects of foliar fertilization containing titanium dioxide on growth, yield and quality of strawberries during cultivation. - Hortic. Environ. Biote. 56: 575-581, 2015. Go to original source...
  18. Cui W., Kamran M., Song Q. et al.: Lanthanum chloride improves maize grain yield by promoting photosynthetic characteristics, antioxidants enzymes and endogenous hor-mone at reproductive stages. - J. Rare Earth. 37: 781-790, 2019. Go to original source...
  19. Detmann K.C., Araújo W.L., Martins S.C.V. et al.: Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. - New Phytol. 196: 752-762, 2012. Go to original source...
  20. Djanaguiraman M., Nair R., Giraldo J.P. et al.: Cerium oxide nanoparticles decrease drought-induced oxidative damage in Sorghum leading to higher photosynthesis and grain yield. - ACS Omega 3: 14406-14416, 2018. Go to original source...
  21. Djanaguiraman M., Prasad P.V.V., Seppanen M.: Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. - Plant Physiol. Bioch. 48: 999-1007, 2010. Go to original source...
  22. DꞌAddazio V., Silva J.V.G., Jardim A.S. et al.: Silicon improves the photosynthetic performance of black pepper plants inoculated with Fusarium solani f. sp. piperis. - Photosynthetica 58: 692-701, 2020.
  23. Epstein E.: Mineral metabolism. - In: Bonner J., Varner J.E. (ed.): Plant Biochemistry. Pp. 438-466. Academic Press, New York 1965. Go to original source...
  24. Ercoli L., Mariotti M., Niccolai L. et al.: The use of titanium shavings as a fertilizer alternative for maize production. - Agrochimica 52: 360-376, 2008.
  25. Feng R., Wei C., Tu S.: The roles of selenium in protecting plants against abiotic stresses. - Environ. Exp. Bot. 87: 58-68, 2013. Go to original source...
  26. Feng T., Chen S.S., Gao D.Q. et al.: Selenium improves photosynthesis and protects photosystem II in pear (Pyrus bretschneideri), grape (Vitis vinifera), and peach (Prunus persica). - Photosynthetica 53: 609-612, 2015. Go to original source...
  27. Filek M., Ko¶cielniak J., Łabanowska M. et al.: Selenium-induced protection of photosynthesis activity in rape (Brassica napus) seedlings subjected to cadmium stress. Fluorescence and EPR measurements. - Photosynth. Res. 105: 27-37, 2010. Go to original source...
  28. Furumoto T., Yamaguchi T., Ohshima-Ichie Y. et al.: A plastidial sodium-dependent pyruvate transporter. - Nature 476: 472-475, 2011. Go to original source...
  29. Gago J., Daloso D.M., Carriquí M. et al.: Mesophyll conductance: the leaf corridors for photosynthesis. - Biochem. Soc. T. 48: 429-439, 2020. Go to original source...
  30. Gao F., Liu C., Qu C. et al.: Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? - BioMetals 21: 211-217, 2008. Go to original source...
  31. Gao M., Zhou J., Liu H. et al.: Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. - Sci. Total Environ. 631-632: 1100-1108, 2018. Go to original source...
  32. Garousi F., Kovács B., Veres S.: Investigation of photosynthesis status of sunflower plants up-taking different forms of selenium. - Adv. Plants Agric. Res. 3: 00083, 2016. Go to original source...
  33. Germ M., Kreft I., Stibilj V., Urbanc-Berčič O.: Combined effects of selenium and drought on photosynthesis and mitochondrial respiration in potato. - Plant Physiol. Bioch. 45: 162-167, 2007. Go to original source...
  34. Ghasemi Y., Ghasemi K., Pirdashti H., Asgharzadeh R.: Effect of selenium enrichment on the growth, photosynthesis and mineral nutrition of broccoli. - Not. Sci. Biol. 8: 199-203, 2016. Go to original source...
  35. Gohari G., Mohammadi A., Akbari A. et al.: Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. - Sci. Rep.-UK 10: 912, 2020. Go to original source...
  36. Gómez-Merino F.C., Trejo-Téllez L.I.: The role of beneficial elements in triggering adaptive responses to environmental stressors and improving plant performance. - In: Vats S. (ed.): Biotic and Abiotic Stress Tolerance in Plants. Pp. 137-172. Springer, Singapore 2018. Go to original source...
  37. Habibi G.: Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. - Acta Agr. Slov. 101: 31-39, 2013. Go to original source...
  38. Habibi G.: Selenium ameliorates salinity stress in Petroselinum crispum by modulation of photosynthesis and by reducing shoot Na accumulation. - Russ. J. Plant Physiol. 64: 368-374, 2017a. Go to original source...
  39. Habibi G.: Physiological, photochemical and ionic responses of sunflower seedlings to exogenous selenium supply under salt stress. - Acta Physiol. Plant. 39: 213, 2017b. Go to original source...
  40. Haghighi M., Ramezani M.R., Rajaii N.: Improving oxidative damage, photosynthesis traits, growth and flower dropping of pepper under high temperature stress by selenium. - Mol. Biol. Rep. 46: 497-503, 2019. Go to original source...
  41. Handa N., Kohli S.K., Sharma A. et al.: Selenium modulates dynamics of antioxidative defence expression, photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants. - Environ. Exp. Bot. 161: 180-192, 2019. Go to original source...
  42. Hedrich R., Shabala S.: Stomata in a saline world. - Curr. Opin. Plant Biol. 46: 87-95, 2018. Go to original source...
  43. Herrett R.A., Hatfield H.H., Crosby D.G., Vlitos A.J.: Leaf abscission induced by the iodide ion. - Plant Physiol. 37: 358-363, 1962. Go to original source...
  44. Hong F., Wang L., Meng X. et al.: The effect of cerium (III) on the chlorophyll formation in spinach. - Biol. Trace Elem. Res. 89: 263-276, 2002. Go to original source...
  45. Hussain S., Iqbal N., Brestic M. et al.: Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment. - Sci. Total Environ. 658: 626-637, 2019b. Go to original source...
  46. Hussain S., Iqbal N., Raza M.A. et al.: Distribution and effects of ionic titanium application on energy partitioning and quantum yield of soybean under different light conditions. - Photosynthetica 57: 572-580, 2019a. Go to original source...
  47. Hussain S., Li S.X., Mumtaz M. et al.: Foliar application of silicon improves stem strength under low light stress by regulating lignin biosynthesis genes in soybean (Glycine max (L.) Merr.). - J. Hazard. Mater. 401: 123256, 2021. Go to original source...
  48. Hussain T., Koyro H.-W., Zhang W. et al.: Low salinity improves photosynthetic performance in Panicum antidotale under drought stress. - Front. Plant Sci. 11: 481, 2020. Go to original source...
  49. Izydorczyk G., Ligas B., Mikula K. et al.: Biofortification of edible plants with selenium and iodine - A systematic literature review. - Sci. Total Environ. 754: 141983, 2021. Go to original source...
  50. Jiang C., Zu C., Lu D. et al.: Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. - Sci. Rep.-UK 7: 42039, 2017. Go to original source...
  51. Jiang C., Zu C., Shen J. et al.: Effects of selenium on the growth and photosynthetic characteristics of flue-cured tobacco (Nicotiana tabacum L.). - Acta Soc. Bot. Pol. 84: 71-77, 2015. Go to original source...
  52. Kaur S., Kaur N., Siddique K.H.M., Nayyar H.: Beneficial elements for agricultural crops and their functional relevance in defence against stresses. - Arch. Agron. Soil Sci. 62: 905-920, 2016. Go to original source...
  53. Kiferle C., Martinelli M., Salzano A.M. et al.: Evidences for a nutritional role of iodine in plants. - Front. Plant Sci. 12: 616868, 2021. Go to original source...
  54. Landini M., Gonzali S., Perata P.: Iodine biofortification in tomato. - J. Plant Nutr. Soil Sc. 174: 480-486, 2011. Go to original source...
  55. Li X.X., Yu B., Dong Y.Y. et al.: Lanthanum chloride enhances the photosynthetic characteristics and increases konjac glucomannan contents in Amorphophallus sinensis Belval. - Photosynthetica 58: 165-173, 2020. Go to original source...
  56. Liu X.Q., Huang H., Liu C. et al.: Physico-chemical property of rare earths. Effects on the energy regulation of photosystem II in Arabidopsis thaliana. - Biol. Trace Elem. Res. 130: 141-151, 2009. Go to original source...
  57. Liu X.Q., Su M.Y., Liu C. et al.: Effect of 4f electron characteristics and alternation valence of rare earths on photosynthesis: Regulating distribution of energy and activities of spinach chloroplast. - J. Rare Earth. 25: 495-501, 2007a. Go to original source...
  58. Liu X.Q., Su M.Y., Liu C. et al.: Effects of CeCl3 on energy transfer and oxygen evolution in spinach photosystem II. - J. Rare Earth. 25: 624-630, 2007b. Go to original source...
  59. Luo H.W., He L.X., Du B. et al.: Foliar application of selenium (Se) at heading stage induces regulation of photosynthesis, yield formation, and quality characteristics in fragrant rice. - Photosynthetica 57: 1007-1014, 2019. Go to original source...
  60. Lyu S., Wei X., Chen J. et al.: Titanium as a beneficial element for crop production. - Front. Plant Sci. 8: 597, 2017. Go to original source...
  61. Ma Q., Yue L.J., Zhang J.L. et al.: Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. - Tree Physiol. 32: 4-13, 2012. Go to original source...
  62. Ma Y., Zhang P., Zhang Z. et al.: Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. - Nanotoxicology 9: 262-270, 2015. Go to original source...
  63. Ma Y., Zou H., Gu H. et al.: Stimulatory effect of lanthanum nitrate on the root tuber yield of Pseudostellaria heterophylla via improved photosynthetic characteristics. - J. Rare Earth. 35: 610-620, 2017. Go to original source...
  64. Maathuis F.J.M.: Sodium in plants: perception, signalling, and regulation of sodium fluxes. - J. Exp. Bot. 65: 849-858, 2014. Go to original source...
  65. Maghsoudi K., Emam Y., Pessarakli M.: Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. - J. Plant Nutr. 39: 1001-1015, 2016. Go to original source...
  66. Malagoli M., Schiavon M., dall'Acqua S., Pilon-Smits E.A.H.: Effects of selenium biofortification on crop nutritional quality. - Front. Plant Sci. 6: 280, 2015. Go to original source...
  67. Marschner P.: Marschner's mineral nutrition of higher plants. Pp. 651. Academic Press, Amsterdam 2012.
  68. Martínez J.-P., Kinet J.-M., Bajji M., Lutts S.: NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. - J. Exp. Bot. 56: 2421-2431, 2005. Go to original source...
  69. Mroczek-Zdyrska M., Strubińska J., Hanaka A.: Selenium improves physiological parameters and alleviates oxidative stress in shoots of lead-exposed Vicia faba L. minor plants grown under phosphorus-deficient conditions. - J. Plant Growth Regul. 36: 186-199, 2017. Go to original source...
  70. Nawaz F., Ahmad R., Ashraf M.Y. et al.: Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. - Ecotox. Environ. Safe. 113: 191-200, 2015. Go to original source...
  71. Naz F.S., Yusuf M., Khan T.A. et al.: Low level of selenium increases the efficacy of 24-epibrassinolide through altered physiological and biochemical traits of Brassica juncea plants. - Food Chem. 185: 441-448, 2015. Go to original source...
  72. Nyitrai P., Bóka K., Gáspár L. et al.: Characterization of the stimulating effect of low-dose stressors in maize and bean seedlings. - J. Plant Physiol. 160: 1175-1183, 2003. Go to original source...
  73. Ohnishi J., Flügge U.-I., Heldt H.W., Kanai R.: Involvement of Na+ in active uptake of pyruvate in mesophyll chloroplasts of some C4 plants: Na+/pyruvate cotransport. - Plant Physiol. 94: 950-959, 1990. Go to original source...
  74. Pereira L.F., Martins S.C.V., Aucique-Pérez C.E. et al.: Silicon alleviates mesophyll limitations of photosynthesis on rice leaves infected by Monographella albescens. - Theor. Exp. Plant Phys. 32: 163-174, 2020. Go to original source...
  75. Pilon-Smits E.A.H.: Selenium in plants. - In: Lüttge U., Beyschlag W. (ed.): Progress in Botany. Pp. 93-107. Springer, Cham 2015. Go to original source...
  76. Pilon-Smits E.A.H., Quinn C.F., Tapken W. et al.: Physiological functions of beneficial elements. - Curr. Opin. Plant Biol. 12: 267-274, 2009. Go to original source...
  77. Proietti P., Nasini L., Del Buono D. et al.: Selenium protects olive (Olea europaea L.) from drought stress. - Sci. Hortic.-Amsterdam 164: 165-171, 2013. Go to original source...
  78. Raliya R., Biswas P., Tarafdar J.C.: TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). -Biotechnol. Rep. 5: 22-26, 2015. Go to original source...
  79. Rasouli F., Kiani-Pouya A., Tahir A. et al.: A comparative analysis of stomatal traits and photosynthetic responses in closely related halophytic and glycophytic species under saline conditions. - Environ. Exp. Bot. 181: 104300, 2021. Go to original source...
  80. Raven J.A.: Cycling silicon - the role of accumulation in plants. -New Phytol. 158: 419-421, 2003. Go to original source...
  81. Redondo-Gómez S., Mateos-Naranjo E., Figueroa M.E., Davy A.J.: Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum. - Plant Biol. 12: 79-87, 2010. Go to original source...
  82. Salgado O.G.G., Teodoro J.C., Alvarenga J.P. et al.: Cerium alleviates drought-induced stress in Phaseolus vulgaris. - J. Rare Earth. 38: 324-331, 2020. Go to original source...
  83. Sepehri A., Gharehbaghli N.: Selenium alleviate cadmium toxicity by improving nutrient uptake, antioxidative and photosynthetic responses of garlic. - Russ. J. Plant Physiol. 66: 152-159, 2019. Go to original source...
  84. Servin A.D., Morales M.I., Castillo-Michel H. et al.: Synchrotron verification of TiO2 accumulation in cucumber fruit: A possible pathway of TiO2 nanoparticle transfer from soil into the food chain. - Environ. Sci. Technol. 47: 11592-11598, 2013. Go to original source...
  85. Sheik M.A., Hameed A., Farooq T., Ibrahim M.: Evaluation of sodium silicate as antioxidant activator and growth enhancer in wheat. - Agrochimica 62: 113-125, 2018.
  86. Smoleń S., Kowalska I., Sady W.: Assessment of biofortification with iodine and selenium of lettuce cultivated in the NFT hydroponic system. - Sci. Hortic.-Amsterdam 166: 9-16, 2014. Go to original source...
  87. Song A., Li P., Fan F. et al.: The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. - PLoS ONE 9: e113782, 2014. Go to original source...
  88. Tadina N., Germ M., Kreft I. et al.: Effects of water deficit and selenium on common buckwheat (Fagopyrum esculentum Moench.) plants. - Photosynthetica 45: 472-476, 2007. Go to original source...
  89. Tighe-Neira R., Reyes-Díaz M., Nunes-Nesi A. et al.: Titanium dioxide nanoparticles provoke transient increase in photosynthetic performance and differential response in antioxidant system in Raphanus sativus L. - Sci. Hortic.-Amsterdam 269: 109418, 2020. Go to original source...
  90. Tripathi P., Na C.-I., Kim Y.: Effect of silicon fertilizer treatment on nodule formation and yield in soybean (Glycine max L.). - Eur. J. Agron. 122: 126172, 2021. Go to original source...
  91. Trippe R.C., Pilon-Smits E.A.H.: Selenium transport and metabolism in plants: Phytoremediation and biofortification implications. - J. Hazard. Mater. 404: 124178, 2021. Go to original source...
  92. Vatansever R., Ozyigit I.I., Filiz E.: Essential and beneficial trace elements in plants, and their transport in roots: a review. - Appl. Biochem. Biotech. 181: 464-482, 2017. Go to original source...
  93. Verma K.K., Wu K.-C., Verma C.L. et al.: Developing mathematical model for diurnal dynamics of photosynthesis in Saccharum officinarum responsive to different irrigation and silicon application. - PeerJ 8: e10154, 2020. Go to original source...
  94. White P.J.: Selenium metabolism in plants. - BBA-Gen. Subjects 1862: 2333-2342, 2018. Go to original source...
  95. Wu H., Tito N., Giraldo J.P.: Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. - ACS Nano 11: 11283-11297, 2017. Go to original source...
  96. Xue T., Hartikainen H., Piironen V.: Antioxidative and growth-promoting effect of selenium on senescing lettuce. - Plant Soil 237: 55-61, 2001. Go to original source...
  97. Yamamoto T., Nakamura A., Iwai H. et al.: Effect of silicon deficiency on secondary cell wall synthesis in rice leaf. - J. Plant Res. 125: 771-779, 2012. Go to original source...
  98. Yildiztugay E., Ozfidan-Konakci C., Kucukoduk M., Tekis S.A.: The impact of selenium application on enzymatic and non-enzymatic antioxidant systems in Zea mays roots treated with combined osmotic and heat stress. - Arch. Agron. Soil Sci. 63: 261-275, 2017. Go to original source...
  99. Ze Y., Liu C., Wang L. et al.: The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. - Biol. Trace Elem. Res. 143: 1131-1141, 2011. Go to original source...
  100. Zhang J., Zou W., Li Y. et al.: Silica distinctively affects cell wall features and lignocellulosic saccharification with large enhancement on biomass production in rice. - Plant Sci. 239: 84-91, 2015. Go to original source...
  101. Zhang M., Tang S., Huang X. et al.: Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). - Environ. Exp. Bot. 107: 39-45, 2014. Go to original source...
  102. Zhang Z., He X., Zhang H. et al.: Uptake and distribution of ceria nanoparticles in cucumber plants. - Metallomics 3: 816-822, 2011. Go to original source...