Photosynthetica 2021, 59(4):557-569 | DOI: 10.32615/ps.2021.048

Photosynthetic traits and biochemical responses in strawberry (Fragaria × ananassa Duch.) leaves supplemented with LED lights

G. LAURIA1, †, E. LO PICCOLO1, †, E. PELLEGRINI1, E. BELLINI2, T. GIORDANI1, L. GUIDI1, G. LORENZINI1, F. MALORGIO1, R. MASSAI1, C. NALI1, L. PAOLI2, D. REMORINI1, L. SANITA' DI TOPPI2, P. VERNIERI2, M. LANDI1
1 Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy
2 Department of Biology, University of Pisa, via Ghini 13, 56126 Pisa, Italy

Selected light wavebands promote plant development and/or the biosynthesis of targeted metabolites. This work offers new insights on the effects of red (R), green (G), blue (B), and white (W - R:G:B; 1:1:1) LED light supplementation on physiochemical traits of strawberry leaves. Gas exchange and chlorophyll fluorescence parameters, photosynthetic pigments, and superoxide anion (*O2-) content were analysed in plants grown for 1 (T1) and 17 (T17) d with light supplementations. At T1, light supplementations resulted in the enhancement of the de-epoxidation state of xanthophylls and nonphotochemical quenching, but no changes were observed in maximal photosynthetic rate (PNmax), irrespective of light spectra. At T17, xanthophyll contents remained higher only in R-supplemented plants. Overall, W light resulted in higher photosynthesis, whilst R and B light depressed PNmax values and promoted *O2- formation at T17. G light did not induce variations in photosynthetic traits nor induced oxidative stress at both T1 and T17.

Additional key words: chlorophyll a fluorescence; gas exchange; mesophyll conductance; oxidative stress; superoxide anion; xanthophyll.

Received: June 8, 2021; Revised: October 4, 2021; Accepted: October 12, 2021; Prepublished online: October 26, 2021; Published: December 17, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
LAURIA, G., LO PICCOLO, E., PELLEGRINI, E., BELLINI, E., GIORDANI, T., GUIDI, L., ... LANDI, M. (2021). Photosynthetic traits and biochemical responses in strawberry (Fragaria × ananassa Duch.) leaves supplemented with LED lights. Photosynthetica59(4), 557-569. doi: 10.32615/ps.2021.048
Download citation

References

  1. Able A.J., Guest D.I., Sutherland M.W.: Use of a new tetrazolium-based assay to study the production of superoxide radicals by tobacco cell cultures challenged with avirulent zoospores of Phytophthora parasitica var nicotianae. - Plant Physiol. 117: 491-499, 1998. Go to original source...
  2. Agarwal A., Dutta Gupta S., Barman M., Mitra A.: Photosynthetic apparatus plays a central role in photosensitive physiological acclimations affecting spinach (Spinacia oleracea L.) growth in response to blue and red photon flux ratios. - Environ. Exp. Bot. 156: 170-182, 2018. Go to original source...
  3. Asada K., Takahashi M.: Production and scavenging of active oxygen in photosynthesis. - In: Kyle D.J., Osmond C.B., Arntzen C.J. (ed.): Photoinhibition. Pp. 228-287. Elsevier, Amsterdam 1987.
  4. Bagdonavièienė A., Jankauskienė J., Èeidaitė A. et al.: The impact of supplemental blue and green LED and HPS lamps lighting effects on the photosynthesis parameters of sweet pepper transplants. - Sodininkystė ir dar¾ininkystė 34: 37-46, 2015.
  5. Ballaré C.J.: Light regulation of plant defense. - Annu. Rev. Plant Biol. 65: 335-363, 2014. Go to original source...
  6. Bantis F., Ouzounis T., Radoglou K.: Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. - Sci. Hortic.-Amsterdam 198: 277-283, 2016. Go to original source...
  7. Bantis F., Smirnakou S., Ouzounis T. et al.: Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). - Sci. Hortic.-Amsterdam 235: 437-451, 2018. Go to original source...
  8. Bernacchi C.J., Portis A.R., Nakano H. et al.: Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. - Plant Physiol. 130: 1992-1998, 2002. Go to original source...
  9. Bourget C.M.: An introduction to light-emitting diodes. - HortScience 43: 1944-1946, 2008. Go to original source...
  10. Brazaitytė A., Sakalauskienė S., Samuolienė G. et al.: The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. - Food Chem. 173: 600-606, 2015. Go to original source...
  11. Caverzan A., Passaia G., Barcellos Rosa S. et al.: Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. - Genet. Mol. Biol. 34: 1011-1019, 2012. Go to original source...
  12. Chen C.-C., Huang M.-Y., Lin K.-H. et al.: Effects of light quality on the growth, development and metabolism of rice seedlings (Oryza sativa L.). - Res. J. Biotechnol. 9: 15-24, 2014.
  13. Choi H.G., Moon B.Y., Kang N.J.: Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber. - Sci. Hortic.-Amsterdam 189: 22-31, 2015. Go to original source...
  14. Cocetta G., Casciani D., Bulgari R. et al.: Light use efficiency for vegetables production in protected and indoor environ- ments. - Eur. Phys. J. Plus 132: 43, 2017. Go to original source...
  15. Czeczuga B.: Carotenoid contents in leaves grown under various light intensities. - Biochem. Syst. Ecol. 15: 523-527, 1987. Go to original source...
  16. Demmig-Adams B., Adams III W.W.: Photoprotection and other responses of plants to high light stress. - Annu. Rev. Plant Phys. 43: 599-626, 1992. Go to original source...
  17. Demmig-Adams B., Gilmore A.M., Adams III W.W.: In vivo functions of carotenoids in higher plants. - FASEB J. 10: 403-412, 1996. Go to original source...
  18. Demotes-Mainard S., Boumaza R., Meyer S., Cerovic Z.G.: Indicators of nitrogen status for ornamental woody plants based on optical measurements of leaf epidermal polyphenol and chlorophyll contents. - Sci. Hortic.-Amsterdam 115: 377-385, 2008. Go to original source...
  19. Farquhar G.D., von Caemmerer S., Berry J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78-90, 1980. Go to original source...
  20. Folta K.M., Childers K.S.: Light as a growth regulator: controlling plant biology with narrow-bandwidth solid-state lighting systems. - HortScience 43: 1957-1964, 2008. Go to original source...
  21. Foyer C.H.: Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. - Environ. Exp. Bot. 154: 134-142, 2018. Go to original source...
  22. Frechilla S., Talbott L.D., Bogomolni R., Zeiger E.: Reversal of blue light-stimulated stomatal opening by green light. - Plant Cell Physiol. 41: 171-176, 2000. Go to original source...
  23. Gago J., Daloso D.M., Carriquí M. et al.: Mesophyll conductance: the leaf corridors for photosynthesis. - Biochem. Soc. T. 48: 429-439, 2020. Go to original source...
  24. Gago J., Coopman R.E., Cabrera H.M. et al.: Photosynthesis limitations in three fern species. - Physiol. Plantarum 149: 599-611, 2013. Go to original source...
  25. Galmés J., Molins A., Flexas J., Conesa M.À.: Coordination between leaf CO2 diffusion and Rubisco properties allows maximizing photosynthetic efficiency in Limonium species. - Plant Cell Environ. 40: 2081-2094, 2017. Go to original source...
  26. García-Plazaola J., Esteban R.: Determination of chlorophylls and carotenoids by HPLC - Protocol. PrometheusWiki, 2016.
  27. Gitelson A.: Towards a generic approach to remote non-invasive estimation of foliar carotenoid-to-chlorophyll ratio. - J. Plant Physiol. 252: 153227, 2020. Go to original source...
  28. Golovatskaya I.F., Karnachuk R.A.: Role of green light in physiological activity of plants. - Russ. J. Plant Physiol. 62: 727-740, 2015. Go to original source...
  29. Govindjee (ed.): Photosynthesis: Energy Conversion by Plants and Bacteria. Vol. 1. Pp. 799. Academic Press, New York 1982a. Go to original source...
  30. Govindjee (ed.): Photosynthesis: Development, Carbon Metabolism and Plant Productivity. Vol. 2. Pp. 580. Academic Press, New York 1982b.
  31. Harley P.C., Loreto F., Di Marco G., Sharkey T.D.: Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. - Plant Physiol. 98: 1429-1436, 1992. Go to original source...
  32. Hernández R., Kubota C.: Growth and morphological response of cucumber seedlings to supplemental red and blue photon flux ratios under varied solar daily light integrals. - Sci. Hortic.-Amsterdam 173: 92-99, 2014. Go to original source...
  33. Hidaka K., Dan K., Imamura H. et al.: Effect of supplemental lighting from different light sources on growth and yield of strawberry. - Environ. Control Biol. 51: 41-47, 2013. Go to original source...
  34. Hikosaka K., Terashima I.: A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use. - Plant Cell Environ. 18: 605-618, 1995. Go to original source...
  35. Hu W., Ren T., Meng F. et al.: Leaf photosynthetic capacity is regulated by the interaction of nitrogen and potassium through coordination of CO2 diffusion and carboxylation. - Physiol. Plantarum 167: 418-432, 2019. Go to original source...
  36. Izzo L.G., Mele B.H., Vitale L. et al.: The role of monochromatic red and blue light in tomato early photomorphogenesis and photosynthetic traits. - Environ. Exp. Bot. 179: 104195, 2020. Go to original source...
  37. Jahns P., Holzwarth A.R.: The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. - BBA-Bioenergetics 1817: 182-193, 2012. Go to original source...
  38. Jamal Uddin A.F.M., Hoq M.Y., Rini S.N. et al.: Influence of supplement LED spectrum on growth and yield of straw-berry. - J. Biosci. Agric. Res. 16: 1348-1355, 2018. Go to original source...
  39. Kalituho L., Rech J., Jahns P.: The roles of specific xanthophylls in light utilization. - Planta 225: 423-439, 2007. Go to original source...
  40. Kim H.H., Goins G.D., Wheeler R.M., Sager J.C.: Green-light supplementation for enhanced lettuce growth under red- and blue-light emitting diodes. - HortScience 39: 1617-1622, 2004. Go to original source...
  41. Kim K., Kook H.S., Jang Y.J. et al.: The effect of blue-light emitting diodes on antioxidant properties and resistance to Botrytis cinerea in tomato. - J. Plant Pathol. Microb. 4: 203, 2013.
  42. Kitajima K., Hogan K.P.: Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. - Plant Cell Environ. 26: 857-865, 2003. Go to original source...
  43. Landi M., Zivcak M., Sytar O. et al.: Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. - BBA-Bioenergetics 1861: 148131, 2020. Go to original source...
  44. Lee S.H., Tewari R.K., Hahn E.J., Paek K.Y.: Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania somnifera (L.) Dunal. plantlets. - Plant Cell Tiss. Org. Cult. 90: 141-151, 2007. Go to original source...
  45. Lefsrud M.G., Kopsell D.A., Sams C.E.: Irradiance from distinct wavelenght light emmitting diodes affect secondary metabolites in kale. - HortScience 43: 2243-2244, 2008. Go to original source...
  46. Leong T.Y., Anderson J.M.: Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. I. Study on the distribution of chlorophyll-protein complexes. - Photosynth. Res. 5: 105-115, 1984. Go to original source...
  47. Li C.-X., Chang S.-X., Khalil-Ur-Rehman M. et al.: Effect of irradiating the leaf abaxial surface with supplemental light-emitting diode lights on grape photosynthesis. - Aust. J. Grape Wine Res. 23: 58-65, 2017. Go to original source...
  48. Li H., Tang C., Xu Z. et al.: Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). - J. Agr. Sci. 4: 262-273, 2012. Go to original source...
  49. Li Q., Kubota C.: Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. - Environ. Exp. Bot. 67: 59-64, 2009. Go to original source...
  50. Li X.-P., Müller-Moulé P., Gilmore A.M., Niyogi K.K.: PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. - P. Natl. Acad. Sci. USA 99: 15222-15227, 2002. Go to original source...
  51. Long S.P., Bernacchi C.J.: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. - J. Exp. Bot. 54: 2393-2401, 2003. Go to original source...
  52. Loreto F., Tsonev T., Centritto M.: The impact of blue light on leaf mesophyll conductance. - J. Exp. Bot. 60: 2283-2290, 2009. Go to original source...
  53. Matysiak B., Kowalski A.: White, blue and red LED lighting on growth, morphology and accumulation of flavonoid compounds in leafy greens. - Zemdirbyste 106: 281-286, 2019. Go to original source...
  54. Mickens M.A., Torralba M., Robinson S.A. et al.: Growth of red pak choi under red and blue, supplemented white, and artificial sunlight provided by LEDs. - Sci. Hortic.-Amsterdam 245: 200-209, 2019. Go to original source...
  55. Mizuno T., Amaki W., Watanabe H.: Effects of monochromatic light irradiation by LED on the growth and anthocyanin contents in leaves of cabbage seedlings. - Acta Hortic. 907: 179-184, 2011. Go to original source...
  56. Momayyezi M., Guy R.D.: Blue light differentially represses mesophyll conductance in high vs low latitude genotypes of Populus trichocarpa Torr. & Gray. - J. Plant Physiol. 213: 122-128, 2017. Go to original source...
  57. Morrow R.C.: LED lighting in horticulture. - HortScience 43: 1947-1950, 2008. Go to original source...
  58. Muneer S., Kim E.J., Park J.S., Lee J.H.: Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). - Int. J. Mol. Sci. 15: 4657-4670, 2014. Go to original source...
  59. Munné-Bosch S., Alegre L.: The function of tocopherols and tocotrienols in plants. - Crit. Rev. Plant Sci. 21: 31-57, 2002. Go to original source...
  60. Olle M., Virsilė A.: The effects of light-emitting diode lighting on greenhouse plant growth and quality. - Agric. Food Sci. 22: 223-234, 2013. Go to original source...
  61. Ouzounis T., Parjikolaei B.R., Fretté X. et al.: Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. - Front. Plant Sci. 6: 19, 2015. Go to original source...
  62. Peñuelas J., Baret F., Filella I.: Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflec- tance. - Photosynthetica 31: 221-230, 1995.
  63. Qin X., Suga M., Kuang T., Shen J.R.: Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. - Science 348: 989-995, 2015. Go to original source...
  64. Roberts M.R., Paul N.D.: Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens. - New Phytol. 170: 677-699, 2006. Go to original source...
  65. Samuolienė G., Brazaitytė A., Vir¹ilė A. et al.: Red light-dose or wavelength-dependent photoresponse of antioxidants in herb microgreens. - PLoS ONE 11: e0163405, 2016. Go to original source...
  66. Samuolienė G., Urbonavièiūtė A., Duchovskis P. et al.: Decrease in nitrate concentration in leafy vegetables under a solid-state illuminator. - HortScience 44: 1857-1860, 2009. Go to original source...
  67. Silvestri C., Caceres M.E., Ceccarelli M. et al.: Influence of continuous spectrum light on morphological traits and leaf anatomy of hazelnut plantlets. - Front. Plant Sci. 10: 1318, 2019. Go to original source...
  68. Singh D., Basu C., Meinhardt-Wollweber M., Roth B.: LEDs for energy efficient greenhouse lighting. - Renew. Sust. Energ. Rev. 49: 139-147, 2015. Go to original source...
  69. Smith H.L., McAusland L., Murchie E.H.: Don't ignore the green light: exploring diverse roles in plant processes. - J. Exp. Bot. 68: 2099-2110, 2017. Go to original source...
  70. Solovchenko A.: Photoprotection in Plants: Optical Screening-Based Mechanisms. Pp. 170. Springer, Berlin-Heidelberg 2010. Go to original source...
  71. Su N., Wu Q., Shen Z. et al.: Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings. - Plant Growth Regul. 73: 227-235, 2014. Go to original source...
  72. Sun J., Nishio J.N., Vogelmann T.C.: Green light drives CO2 fixation deep within leaves. - Plant Cell Physiol. 39: 1020-1026, 1998. Go to original source...
  73. Sutherland M., Learmonth B.: The tetrazolium dyes MTS and XTT provide new quantitative assays for superoxide and superoxide dismutase. - Free Radic. Res. 27: 283-289, 1997. Go to original source...
  74. Talbott L.D., Hammad J.W., Harn L.C. et al.: Reversal by green light of blue light-stimulated stomatal opening in intact, attached leaves of Arabidopsis operates only in the potassium-dependent, morning phase of movement. - Plant Cell Physiol. 47: 332-339, 2006. Go to original source...
  75. Talbott L.D., Nikolova G., Ortiz A. et al.: Green light reversal of blue-light-stimulated stomatal opening is found in a diversity of plant species. - Am. J. Bot. 89: 366-368, 2002. Go to original source...
  76. Terashima I., Hikosaka K.: Comparative ecophysiology of leaf and canopy photosynthesis. - Plant Cell Environ. 18: 1111-1128, 1995. Go to original source...
  77. Thoma F., Somborn-Schulz A., Schlehuber D. et al.: Effects of light on secondary metabolites in selected leafy greens: A review. - Front. Plant Sci. 11: 497, 2020. Go to original source...
  78. Vir¹ilė A., Brazaitytė A., Va¹takaitė-Kairienė V. et al.: Nitrate, nitrite, protein, amino acid contents, and photosynthetic and growth characteristics of tatsoi cultivated under various photon flux densities and spectral light compositions. - Sci. Hortic.-Amsterdam 258: 108781, 2019. Go to original source...
  79. Vir¹ilė A., Brazaitytė A., Jankauskienė J. et al.: Pre-harvest LED lighting strategies for reduced nitrate contents in leafy vegetables. - Zemdirbyste 105: 249-256, 2018. Go to original source...
  80. Wang H., Gu M., Cui J. et al.: Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. - J. Photoch. Photobio. B 96: 30-37, 2009. Go to original source...
  81. Wang H., Jiang Y.P., Yu H.J. et al.: Light quality affects incidence of powdery mildew, expression of defence-related genes and associated metabolism in cucumber plants. - Eur. J. Plant Pathol. 127: 125-135, 2010. Go to original source...
  82. Xu H., Fu Y.-N., Li T.-L., Wang R.: Effects of different LED light wavelengths on the resistance of tomato against Botrytis cinerea and the corresponding physiological mechanisms. - J. Integr. Agr. 16: 106-114, 2017. Go to original source...
  83. Young A.J.: Factors that affect the carotenoid composition of higher plants and algae. - In: Young A.J., Britton G. (ed.): Carotenoids in Photosynthesis. Pp. 160-205. Springer, Dordrecht 1993. Go to original source...
  84. Zhou X., Huang W., Zhang J. et al.: A novel combined spectral index for estimating the ratio of carotenoid to chlorophyll content to monitor crop physiological and phenological status. - Int. J. Appl. Earth Obs. Geoinf. 76: 128-142, 2019. Go to original source...
  85. Zukauskas A., Bliznikas Z., Breivė K. et al.: Effect of supplementary pre-harvest LED lighting on the antioxidant properties of lettuce cultivars. - Acta Hortic. 907: 87-90, 2011. Go to original source...