Photosynthetica 2021, 59(4):625-632 | DOI: 10.32615/ps.2021.052
Effects of red to far-red light ratio on growth and photosynthetic characteristics of tomato seedlings under calcium nitrate stress
- College of Horticulture, Sichuan Agricultural University, 611130 Chengdu, China
Secondary soil salinization causes plant stress, which can be relieved by different ratios of red to far-red light (R:FR). Our study aimed to elucidate the role of low R:FR ratios treatments on photosynthesis and growth of tomato seedlings in salinized soils. Tomato seedlings were treated under three R:FR ratios and calcium nitrate was applied simultaneously. The results showed that the treatments under low R:FR ratios stimulated growth parameters of tomato seedlings under calcium nitrate stress, the best impact being achieved at the R:FR ratio of 0.7 in this experiment. Low R:FR ratios treatments increased proline content as well as PSII maximum efficiency, actual electron transport operating efficiency, and photochemical quenching of tomato seedlings under calcium nitrate stress but decreased the value of nonphotochemical quenching. Moreover, low R:FR ratios treatments promoted net photosynthetic rate and increased the expression of a Rubisco gene. In conclusion, low R:FR ratios treatments could improve the salt resistance of greenhouse tomato plants.
Additional key words: calcium nitrate stress; chlorophyll fluorescence; photosynthesis; red to far-red light ratio; salt stress; tomato.
Received: May 14, 2021; Revised: October 18, 2021; Accepted: November 1, 2021; Prepublished online: November 23, 2021; Published: December 17, 2021 Show citation
| ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Ahres M., Gierczik K., Boldizsár Á. et al.: Temperature and light-quality-dependent regulation of freezing tolerance in barley. - Plants 9: 83, 2020.
Go to original source... - Alves L.R., Prado E.R., Oliveira R.D. et al.: Mechanisms of cadmium-stress avoidance by selenium in tomato plants. - Ecotoxicology 29: 594-606, 2020.
Go to original source... - Arico D., Legris M., Castro L. et al.: Neighbour signals perceived by phytochrome B increase thermotolerance in Arabidopsis. - Plant Cell Environ. 42: 2554-2566, 2019.
Go to original source... - Asada K.: The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. - Annu. Rev. Plant Phys. 50: 601-639, 1999.
Go to original source... - Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008.
Go to original source... - Bergougnoux V.: The history of tomato: From domestication to biopharming. - Biotechnol. Adv. 32: 170-189, 2014.
Go to original source... - Boggs J.Z., Loewy K., Bibee K., Heschel M.S.: Phytochromes influence stomatal conductance plasticity in Arabidopsis thaliana. - Plant Growth Regul. 60: 77-81, 2010.
Go to original source... - Cao K., Yu J., Xu D. et al.: Exposure to lower red to far-red light ratios improve tomato tolerance to salt stress. - BMC Plant Biol. 18: 92, 2018.
Go to original source... - Craig D.S., Runkle E.S.: A moderate to high red to far-red light ratio from light-emitting diodes controls flowering of short-day plants. - J. Am. Soc. Hortic. Sci. 138: 167-172, 2013.
Go to original source... - Demmig-Adams B., Adams III W.W., Barker D.H. et al.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. - Physiol. Plantarum 98: 253-264, 1996.
Go to original source... - Fahad S., Hussain S., Matloob A. et al.: Phytohormones and plant responses to salinity stress: a review. - Plant Growth Regul. 75: 391-404, 2015.
Go to original source... - Franklin K.A., Quail P.H.: Phytochrome functions in Arabidopsis development. - J. Exp. Bot. 61: 11-24, 2010.
Go to original source... - Gururani M.A., Ganesan M., Song I.-J. et al.: Transgenic turfgrasses expressing hyperactive Ser599Ala phytochrome A mutant exhibit abiotic stress tolerance. - J. Plant Growth Regul. 35: 11-21, 2016.
Go to original source... - Hasegawa P.M., Bressan R.A., Zhu J.K., Bohnert H.J.: Plant cellular and molecular responses to high salinity. - Annu. Rev. Plant Phys. 51: 463-499, 2000.
Go to original source... - Hendricks S.B., Borthwick H.A.: The function of phytochrome in regulation of plant growth. - P. Natl. Acad. Sci. USA 58: 2125-2130, 1967.
Go to original source... - Hertel C., Leuchner M., Menzel A.: Vertical variability of spectral ratios in a mature mixed forest stand. - Agr. Forest Meteorol. 151: 1096-1105, 2011.
Go to original source... - Indorf M., Cordero J., Neuhaus G., Rodríguez-Franco M.: Salt tolerance (STO), a stress-related protein, has a major role in light signalling. - Plant J. 51: 563-574, 2007.
Go to original source... - Karim A., Fukamachi H., Hidaka T.: Photosynthetic performance of Vigna radiata L. leaves developed at different temperature and irradiance leaves. - Plant Sci. 164: 451-458, 2003.
Go to original source... - Kim H.-J., Kim Y.-K., Park J.Y., Kim J.: Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. - Plant J. 29: 693-704, 2002.
Go to original source... - Lakshmi A., Ramanjulu S., Veeranjaneyulu K., Sudhakar C.: Effect of NaCl on photosynthesis parameters in two cultivars of mulberry. - Photosynthetica 32: 285-289, 1996.
- Li J., Li G., Wang H., Deng X.W.: Phytochrome signaling mechanisms. - The Arabidopsis Book 9: e0148, 2011.
Go to original source... - Li Q., Kubota C.: Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. - Environ. Exp. Bot. 67: 59-64, 2009.
Go to original source... - Li X.G., Wang X.M., Meng Q.W., Zou Q.: Factors limiting photosynthetic recovery in sweet pepper leaves after short-term chilling stress under low irradiance. - Photosynthetica 42: 257-262, 2004.
Go to original source... - Liang B.B., Wang W.J., Fan X.X. et al.: Arbuscular mycorrhizal fungi can ameliorate salt stress in Elaeagnus angustifolia by improving leaf photosynthetic function and ultrastructure. - Plant Biol. 23: 232-241, 2021.
Go to original source... - Liao R., Zhang L.: Physiological response of Solanum nigrum to salt stress. - E3S Web Conf. 233: 01140, 2021.
Go to original source... - Livak K.J., Schmittgen T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. - Methods 25: 402-408, 2001.
Go to original source... - Martínez-García J.F., Gallemí M., Molina-Contreras M.J. et al.: The shade avoidance syndrome in Arabidopsis: the antagonistic role of phytochrome A and B differentiates vegetation proximity and canopy shade. - PLoS ONE 9: e109275, 2014.
Go to original source... - Misra A.N., Sahu S.M., Misra M. et al.: Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars. - Biol. Plantarum 39: 257-262, 1997.
Go to original source... - Ors S., Ekinci M., Yildirim E. et al.: Interactive effects of salinity and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings. -S. Afr. J. Bot. 137: 335-339, 2021.
Go to original source... - Parida A.K., Das A.B.: Salt tolerance and salinity effects on plants: a review. - Ecotox. Environ. Safe. 60: 324-349, 2005.
Go to original source... - Possart A., Xu T., Paik I. et al.: Characterization of phytochrome interacting factors from the moss Physcomitrella patens illustrates conservation of phytochrome signaling modules in land plants. - Plant Cell 29: 310-330, 2017.
Go to original source... - Quail P.H.: Phytochrome photosensory signaling networks. - Nat. Rev. Mol. Cell Biol. 3: 85-93, 2002.
Go to original source... - Rozema J., Flowers T.: Crop for a salinized world. - Science 322: 1478-1480, 2008.
Go to original source... - Shu S., Yuan L.Y., Guo S.R. et al.: Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. - Plant Physiol. Bioch. 63: 209-216, 2013.
Go to original source... - Wang F., Wu N., Zhang L. et al.: Light signaling-dependent regulation of photoinhibition and photoprotection in tomato. -Plant Physiol. 176: 1311-1326, 2018.
Go to original source... - Wang H., Jiang Y.P., Yu H.J. et al.: Light quality affects incidence of powdery mildew, expression of defence-related genes and associated metabolism in cucumber plants. - Eur. J. Plant Pathol. 127: 125-135, 2010.
Go to original source... - Wang Y.L., Bian Z.H., Pan T.H. et al.: Improvement of tomato salt tolerance by the regulation of photosynthetic performance and antioxidant enzyme capacity under a low red to far-red light ratio. - Plant Physiol. Bioch. 167: 806-815, 2021.
Go to original source... - Yang F., Liu Q., Cheng Y. et al.: Low red/far-red ratio as a signal promotes carbon assimilation of soybean seedlings by increasing the photosynthetic capacity. - BMC Plant Biol. 20: 148, 2020.
Go to original source... - Yang Y.X., Wang M.M., Yin Y.L. et al.: RNA-seq analysis reveals the role of red light in resistance against Pseudomonas syringae pv. tomato DC3000 in tomato plants. - BMC Genomics 16: 120, 2015.
Go to original source... - Yuan L., Shu S., Sun J. et al.: Effects of 24-epi-brassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress. - Photosynth. Res. 112: 205-214, 2012.
Go to original source... - Zhou Y.H., Huang L.F., Yu J.Q.: [Effects of sustained chilling and low light on gas exchange, chlorophyll fluorescence quenching and absorbed light allocation in cucumber leaves.] -Physiol. Mol. Biol. Pla. 30: 153-160, 2004. [In Chinese]




