Photosynthetica 2021, 59(4):633-639 | DOI: 10.32615/ps.2021.053

Fatty acid composition and cpDNA content in Arabidopsis thaliana mutants deprived of EGY1 protease

M. ADAMIEC1, M. SZOMEK2, E. GABAŁA3, J. DOBROGOJSKI4, L. MISZTAL1, R. LUCIŃSKI1
1 Adam Mickiewicz University, Faculty of Biology, Institute of Experimental Biology, Department of Plant Physiology, Umultowska 89, 61-614 Poznań, Poland
2 Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, M 5230 Odense, Denmark
3 Institute of Plant Protection, National Research Institute, Węgorka 20, 60-318 Poznań, Poland
4 Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-637 Poznań, Poland

EGY1 (ethylene-dependent gravitropism-deficient and yellow-green 1) is an intramembrane metalloprotease located in chloroplasts, involved in many diverse processes including chloroplast development, chlorophyll biosynthesis, and the ethylene-dependent gravitropic response. Plants deprived of this protease display pleiotropic effects such as the yellow-green early senescence phenotype and a poorly developed thylakoid system membrane in the mature chloroplasts. We applied the GC/MS technique to analyze the changes in fatty acid composition in two egy1 mutant lines. We used DAPI staining and transmission electron microscopy methods to establish the number of nucleoids and the amount of chloroplast DNA. Our results indicated that the lack of EGY1 protease led to a dramatic overaccumulation and a dramatic decrease in the content of linolenic acid C18:3 and hexadecatrienoic acid C16:3, respectively. The amount of chloroplast DNA and the number of nucleoids were severely reduced in egy1 mutant lines. Similarly, a reduced correlation between DAPI and autofluorescence signal was observed, which may indicate some perturbations in nucleoid anchoring.

Additional key words: Arabidopsis thaliana; chloroplasts; EGY1; fatty acids; nucleoids.

Received: August 4, 2021; Revised: October 21, 2021; Accepted: November 2, 2021; Prepublished online: November 25, 2021; Published: December 17, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ADAMIEC, M., SZOMEK, M., GABAŁA, E., DOBROGOJSKI, J., MISZTAL, L., & LUCIŃSKI, R. (2021). Fatty acid composition and cpDNA content in Arabidopsis thaliana mutants deprived of EGY1 protease. Photosynthetica59(4), 633-639. doi: 10.32615/ps.2021.053
Download citation

References

  1. Adamiec M., Ciesielska M., Zala¶ P., Luciński R.: Arabidopsis thaliana intramembrane proteases. - Acta Physiol. Plant. 39: 146, 2017. Go to original source...
  2. Adamiec M., Misztal L., Ciesielska M., Luciński R.: The changes of PSII supercomplex stoichiometry in egy1 mutants are related to chlorophyll b deficiency. - Photosynthetica 59: 294-302, 2021. Go to original source...
  3. Adamiec M., Misztal L., Kasprowicz-Malu¶ki A., Luciński R.: EGY3: homolog of S2P protease located in chloroplasts. - Plant Biol. 22: 734-743, 2020. Go to original source...
  4. Adamiec M., Misztal L., Kosicka E. et al.: Arabidopsis thaliana egy2 mutants display altered expression level of genes encoding crucial photosystem II proteins. - J. Plant Physiol. 231: 155-167, 2018. Go to original source...
  5. Afitlhile M., Duffield-Duncan K., Fry M. et al.: The toc132toc120 heterozygote mutant of Arabidopsis thaliana accumulates reduced levels of hexadecatrienoic acid. - Plant Physiol. Bioch. 96: 426-435, 2015. Go to original source...
  6. Andreu V., Collados R., Testillano P.S. et al.: In situ molecular identification of the plastid ω3 fatty acid desaturase FAD7 from soybean: Evidence of thylakoid membrane localization. -Plant Physiol. 145: 1336-1344, 2007. Go to original source...
  7. Bolte S., Cordelières F.P.: A guided tour into subcellular colocalization analysis in light microscopy. - J. Microsc. 224: 213-232, 2006. Go to original source...
  8. Borek S., Ratajczak W., Ratajczak L.: Ultrastructural and enzymatic research on the role of sucrose in mobilization of storage lipids in germinating yellow lupine seeds. - Plant Sci. 170: 441-452, 2006. Go to original source...
  9. Boyes D.C., Zayed A.M., Ascenzi R. et al.: Growth stage-based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. - Plant Cell 13: 1499-1510, 2001. Go to original source...
  10. Chen C., Wang J., Zhao X.: Leaf senescence induced by EGY1 defection was partially restored by glucose in Arabidopsis thaliana. - Bot. Stud. 57: 5, 2016. Go to original source...
  11. Chen G., Bi Y.R., Li N.: EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. - Plant J. 41: 364-375, 2005. Go to original source...
  12. Dyer J.M., Mullen R.T.: Immunocytological localization of two plant fatty acid desaturases in the endoplasmic reticulum. - FEBS Lett. 494: 44-47, 2001. Go to original source...
  13. Evans I.M., Rus A.M., Belanger E.M. et al.: Dismantling of Arabidopsis thaliana mesophyll cell chloroplasts during natural leaf senescence. - Plant Biol. 12: 1-12, 2010. Go to original source...
  14. Ferro M., Salvi D., Brugière S. et al.: Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. -Mol. Cell. Proteomics 2: 325-345, 2003. Go to original source...
  15. Golczyk H., Greiner S., Wanner G. et al.: Chloroplast DNA in mature and senescing leaves: A reappraisal. - Plant Cell 26: 847-854, 2014. Go to original source...
  16. Guo D., Gao X., Li H. et al.: EGY1 plays a role in regulation of endodermal plastid size and number that are involved in ethylene-dependent gravitropism of light-grown Arabidopsis hypocotyls. - Plant Mol. Biol. 66: 345-360, 2008. Go to original source...
  17. Koo A.J.K., Ohlrogge J.B.: The predicted candidates of Arabidopsis plastid inner envelope membrane proteins and their expression profiles. - Plant Physiol. 130: 823-836, 2002. Go to original source...
  18. Li B., Li Q., Xiong L. et al.: Arabidopsis plastid AMOS1/EGY1 integrates abscisic acid signaling to regulate global gene expression response to ammonium stress. - Plant Physiol. 160: 2040-2051, 2012. Go to original source...
  19. Li J., Galla A., Avila C.A. et al.: Fatty acid desaturases in the chloroplast and endoplasmic reticulum promote susceptibility to the green peach aphid Myzus persicae in Arabidopsis thaliana. - Mol. Plant Microbe. Interact. 34: 691-702, 2021. Go to original source...
  20. Matsuda O., Watanabe C., Iba K.: Hormonal regulation of tissue-specific ectopic expression of an Arabidopsis endoplasmic reticulum-type ω-3 fatty acid desaturase (FAD3) gene. - Planta 213: 833-840, 2001. Go to original source...
  21. Morris J., Karnovsky M.: A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. - J. Cell Biol. 27: 137-138, 1965.
  22. Oldenburg D.J., Bendich A.J.: DNA maintenance in plastids and mitochondria of plants. - Front. Plant Sci. 6: 883, 2015. Go to original source...
  23. O'Neill C.M., Baker D., Bennett G. et al.: Two high linolenic mutants of Arabidopsis thaliana contain megabase-scale genome duplications encompassing the FAD3 locus. - Plant J. 68: 912-918, 2011. Go to original source...
  24. Powikrowska M., Oetke S., Jensen P.E., Krupinska K.: Dynamic composition, shaping and organization of plastid nucleoids. - Front. Plant Sci. 5: 424, 2014. Go to original source...
  25. Rowan B.A., Oldenburg D.J., Bendich A.J.: A multiple-method approach reveals a declining amount of chloroplast DNA during development in Arabidopsis. - BMC Plant Biol. 9: 3, 2009. Go to original source...
  26. Sakai A., Takano H., Kuroiwa T.: Organelle nuclei in higher plants: Structure, composition, function, and evolution. - Int. Rev. Cytol. 238: 59-118, 2004. Go to original source...
  27. Sakamoto W., Takami T.: Chloroplast DNA dynamics: Copy number, quality control and degradation. - Plant Cell Physiol 59: 1120-1127, 2018. Go to original source...
  28. Shah S., Xin Z., Browse J.: Overexpression of the FAD3 desaturase gene in a mutant of Arabidopsis. - Plant Physiol. 114: 1533-1539, 1997. Go to original source...
  29. Shaver J.M., Oldenburg D.J., Bendich A.J.: Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize. - Planta 224: 72-82, 2006. Go to original source...
  30. Soria-García Á., Rubio M.C., Lagunas B. et al.: Tissue distribution and specific contribution of Arabidopsis FAD7 and FAD8 plastid desaturases to the JA- and ABA-mediated cold stress or defense responses. - Plant Cell Physiol. 60: 1025-1040, 2019. Go to original source...
  31. Spurr A.R.: A low-viscosity epoxy resin embedding medium for electron microscopy. - J. Ultrastruct. Res. 26: 31-43, 1969. Go to original source...
  32. Yu F.W., Zhu X.F., Li G.J. et al.: The chloroplast protease AMOS1/EGY1 affects phosphate homeostasis under phosphate stress. - Plant Physiol. 172: 1200-1208, 2016. Go to original source...
  33. Zoschke R., Liere K., Börner T.: From seedling to mature plant: Arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. - Plant J. 50: 710-722, 2007. Go to original source...