Photosynthetica 2022, 60(1):147-156 | DOI: 10.32615/ps.2022.016

Dependence of the rate-limiting steps in the dark-to-light transition of photosystem II on the lipidic environment of the reaction center

M. MAGYAR1, P. AKHTAR1, G. SIPKA1, W. HAN2, X. LI2, G. HAN2, J.-R. SHEN2, 3, P.H. LAMBREV1, G. GARAB1, 4
1 Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
2 Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
3 Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
4 Faculty of Science, University of Ostrava, Ostrava, Czech Republic

In our earlier works, we have identified rate-limiting steps in the dark-to-light transition of PSII. By measuring chlorophyll a fluorescence transients elicited by single-turnover saturating flashes (STSFs) we have shown that in diuron-treated samples an STSF generates only F1 (< Fm) fluorescence level, and to produce the maximum (Fm) level, additional excitations are required, which, however, can only be effective if sufficiently long Δτ waiting times are allowed between the excitations. Biological variations in the half-rise time (Δτ1/2) of the fluorescence increment suggest that it may be sensitive to the physicochemical environment of PSII. Here, we investigated the influence of the lipidic environment on Δτ1/2 of PSII core complexes of Thermosynechococcus vulcanus. We found that while non-native lipids had no noticeable effects, thylakoid membrane lipids considerably shortened the Δτ1/2, from ~ 1 ms to ~ 0.2 ms. The importance of the presence of native lipids was confirmed by obtaining similarly short Δτ1/2 values in the whole T. vulcanus cells and isolated pea thylakoid membranes. Minor, lipid-dependent reorganizations were also observed by steady-state and time-resolved spectroscopic measurements. These data show that the processes beyond the dark-to-light transition of PSII depend significantly on the lipid matrix of the reaction center.

Additional key words: closed state of PSII; conformational changes; dielectric relaxation; light-adapted state of PSII, light-induced changes; proteoliposomes.

Received: December 16, 2021; Revised: March 4, 2022; Accepted: March 7, 2022; Prepublished online: March 14, 2022; Published: March 18, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
MAGYAR, M., AKHTAR, P., SIPKA, G., HAN, W., LI, X., HAN, G., ... GARAB, G. (2022). Dependence of the rate-limiting steps in the dark-to-light transition of photosystem II on the lipidic environment of the reaction center. Photosynthetica60(SPECIAL ISSUE 2022), 147-156. doi: 10.32615/ps.2022.016
Download citation

Supplementary files

Download fileMagyar_2855_supplement.docx

File size: 662.73 kB

References

  1. Akhtar P., Dorogi M., Pawlak K. et al.: Pigment interactions in light-harvesting complex II in different molecular environments. - J. Biol. Chem. 290: 4877-4886, 2015. Go to original source...
  2. Akhtar P., Lingvay M., Kiss T. et al.: Excitation energy transfer between Light-harvesting complex II and Photosystem I in reconstituted membranes. - BBA-Bioenergetics 1857: 462-472, 2016. Go to original source...
  3. Alfonso M., Montoya G., Cases R. et al.: Core antenna complexes, Cp43 and Cp47, of higher plant photosystem II. Spectral properties, pigment stoichiometry, and amino acid composition. - Biochemistry-US 33: 10494-10500, 1994. Go to original source...
  4. Andrizhiyevskaya E.G., Chojnicka A., Bautista J.A. et al.: Origin of the F685 and F695 fluorescence in Photosystem II. - Photosynth. Res. 84: 173-180, 2005. Go to original source...
  5. Brettel K., Schlodder E., Witt H.T.: Nanosecond reduction kinetics of photooxidized chlorophyll-aII (P-680) in single flashes as a probe for the electron pathway, H+-release and charge accumulation in the O2-evolving complex. - BBA-Bioenergetics 766: 403-415, 1984. Go to original source...
  6. Cardona T., Sedoud A., Cox N., Rutherford A.W.: Charge separation in Photosystem II: A comparative and evolutionary overview. - BBA-Bioenergetics 1817: 26-43, 2012. Go to original source...
  7. Chylla R.A., Garab G., Whitmarsh J.: Evidence for slow turnover in a fraction of Photosystem II complexes in thylakoid membranes. - BBA-Bioenergetics 894: 562-571, 1987. Go to original source...
  8. Delosme R.: [Study of the induction of fluorescence in green algae and chloroplasts at the onset of an intense illumination.] -BBA-Bioenergetics 143: 108-128, 1967. [In French] Go to original source...
  9. Dimroth P., Kaim G., Matthey U.: Crucial role of the membrane potential for ATP synthesis by F1Fo ATP synthases. - J. Exp. Biol. 203: 51-59, 2000. Go to original source...
  10. Dlouhý O., Kurasová I., Karlický V. et al.: Modulation of non-bilayer lipid phases and the structure and functions of thylakoid membranes: effects on the water-soluble enzyme violaxanthin de-epoxidase. - Sci. Rep.-UK 10: 11959, 2020. Go to original source...
  11. Duchêne S., Siegenthaler P.-A.: Do glycerolipids display lateral heterogeneity in the thylakoid membrane? - Lipids 35: 739-744, 2000. Go to original source...
  12. Duncan A.L., Robinson A.J., Walker J.E.: Cardiolipin binds selectively but transiently to conserved lysine residues in the rotor of metazoan ATP synthases. - P. Natl. Acad. Sci. USA 113: 8687-8692, 2016. Go to original source...
  13. France L.L., Geacintov N.E., Breton J., Valkunas L.: The dependence of the degrees of sigmoidicities of fluorescence induction curves in spinach chloroplasts on the duration of actinic pulses in pump-probe experiments. - BBA-Bioenergetics 1101: 105-119, 1992. Go to original source...
  14. Garab G., van Amerongen H.: Linear dichroism and circular dichroism in photosynthesis research. - Photosynth. Res. 101: 135-146, 2009. Go to original source...
  15. Gombos Z., Várkonyi Z., Hagio M. et al.: Phosphatidylglycerol requirement for the function of electron acceptor plastoquinone QB in the photosystem II reaction center. - Biochemistry-US 41: 3796-3802, 2002. Go to original source...
  16. Goss R., Latowski D.: Lipid dependence of xanthophyll cycling in higher plants and algae. - Front. Plant Sci. 11: 455, 2020. Go to original source...
  17. Haferkamp S., Haase W., Pascal A.A. et al.: Efficient light harvesting by photosytem II requires an optimized protein packing density in grana thylakoids. - J. Biol. Chem. 285: 17020-17028, 2010. Go to original source...
  18. Hansson O., Wydrzynski T.: Current perceptions of Photo- system II. - Photosynth. Res. 23: 131-162, 1990. Go to original source...
  19. Heinemeyer J., Eubel H., Wehmhöner D. et al.: Proteomic approach to characterize the supramolecular organization of photosystems in higher plants. - Phytochemistry 65: 1683-1692, 2004. Go to original source...
  20. Hinz U.G.: Isolation of the photosystem II reaction center complex from barley. Characterization by circular dichroism spectroscopy and amino acid sequencing. - Carlsberg Res. Commun. 50: 285-298, 1985. Go to original source...
  21. Horton P., Ruban A.: Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection. -J. Exp. Bot. 56: 365-373, 2005. Go to original source...
  22. Jarvis P., Dörmann P., Peto C.A. et al.: Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. - P. Natl. Acad. Sci. USA 97: 8175-8179, 2000. Go to original source...
  23. Joliot P., Joliot A.: Comparative study of the fluorescence yield and of the C550 absorption change at room temperature. - BBA-Bioenergetics 546: 93-105, 1979. Go to original source...
  24. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. - Photosynth. Res. 122: 121-158, 2014. Go to original source...
  25. Kansy M., Wilhelm C., Goss R.: Influence of thylakoid membrane lipids on the structure and function of the plant photosystem II core complex. - Planta 240: 781-796, 2014. Go to original source...
  26. Kawakami K., Shen J.R.: Purification of fully active and crystallizable photosystem II from thermophilic cyanobacteria. - Method. Enzymol. 613: 1-16, 2018. Go to original source...
  27. Koike H., Inoue Y.: Preparation of oxygen-evolving photosystem II particles from a thermophilic blue-green alga. - In: Inoue Y., Crofts A.R., Govindjee et al. (ed.): The Oxygen Evolving System of Photosynthesis. Pp. 257-263. Academic Press, Tokyo 1983. Go to original source...
  28. Krumova S.B., Laptenok S.P., Kovács L. et al.: Digalactosyl-diacylglycerol-deficiency lowers the thermal stability of thylakoid membranes. - Photosynth. Res. 105: 229-242, 2010. Go to original source...
  29. Kruse O., Hankamer B., Konczak C. et al.: Phosphatidylglycerol is involved in the dimerization of photosystem II. - J. Biol. Chem. 275: 6509-6514, 2000. Go to original source...
  30. Laisk A., Oja V.: Variable fluorescence of closed photochemical reaction centers. - Photosynth. Res. 143: 335-346, 2020. Go to original source...
  31. Latowski D., Åkerlund H.E., Strzalka K.: Violaxanthin de-epoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity. - Biochemistry-US 43: 4417-4420, 2004. Go to original source...
  32. Lavergne J., Matthews C., Ginet N.: Electron and proton transfer on the acceptor side of the reaction center in chromatophores of Rhodobacter capsulatus: Evidence for direct protonation of the semiquinone state of QB. - Biochemistry-US 38: 4542-4552, 1999. Go to original source...
  33. Lavergne J., Trissl H.W.: Theory of fluorescence induction in photosystem II: derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units. - Biophys. J. 68: 2474-2492, 1995. Go to original source...
  34. Lazár D., Pospí¹il P.: Mathematical simulation of chlorophyll a fluorescence rise measured with 3-(3',4'-dichlorophenyl)-1,1-dimethylurea-treated barley leaves at room and high temperatures. - Eur. Biophys. J. 28: 468-477, 1999. Go to original source...
  35. Lee A.G.: Membrane lipids: It's only a phase. - Curr. Biol. 10: R377-R380, 2000. Go to original source...
  36. Leng J., Sakurai I., Wada H., Shen J.-R.: Effects of phospholipase and lipase treatments on photosystem II core dimer from a thermophilic cyanobacterium. - Photosynth. Res. 98: 469-478, 2008. Go to original source...
  37. Magyar M., Sipka G., Kovács L. et al.: Rate-limiting steps in the dark-to-light transition of Photosystem II - revealed by chlorophyll-a fluorescence induction. - Sci. Rep.-UK 8: 2755, 2018. Go to original source...
  38. Miloslavina Y., Szczepaniak M., Müller M.G. et al.: Charge separation kinetics in intact photosystem II core particles is trap-limited. A picosecond fluorescence study. - Biochemistry-US 45: 2436-2442, 2006. Go to original source...
  39. Minoda A., Sonoike K., Okada K. et al.: Decrease in the efficiency of the electron donation to tyrosine Z of photosystem II in an SQDG-deficient mutant of Chlamydomonas. - FEBS Lett. 553: 109-112, 2003. Go to original source...
  40. Moise N., Moya I.: Correlation between lifetime heterogeneity and kinetics heterogeneity during chlorophyll fluorescence induction in leaves: 1. Mono-frequency phase and modulation analysis reveals a conformational change of a PSII pigment complex during the IP thermal phase. - BBA-Bioenergetics 1657: 33-46, 2004. Go to original source...
  41. Nelson N., Ben-Shem A.: The complex architecture of oxygenic photosynthesis. - Nat. Rev. Mol. Cell Biol. 5: 971-982, 2004. Go to original source...
  42. Neubauer C., Schreiber U.: The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the photosystem II acceptor side. - Z. Naturforsch. C 42: 1246-1254, 1987. Go to original source...
  43. Nuijs A.M., van Gorkom H.J., Plijter J.J., Duysens L.N.M.: Primary-charge separation and excitation of chlorophyll a in photosystem II particles from spinach as studied by picosecond absorbance-difference spectroscopy. - BBA-Bioenergetics 848: 167-175, 1986. Go to original source...
  44. Oja V., Laisk A.: Time- and reduction-dependent rise of photosystem II fluorescence during microseconds-long inductions in leaves. - Photosynth. Res. 145: 209-225, 2020. Go to original source...
  45. Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 818. Springer, Dordrecht 2004. Go to original source...
  46. Papageorgiou G.C., Govindjee: Photosystem II fluorescence: Slow changes - Scaling from the past. - J. Photoch. Photobio. B 104: 258-270, 2011. Go to original source...
  47. Prá¹il O., Kolber Z.S., Falkowski P.G.: Control of the maximal chlorophyll fluorescence yield by the QB binding site. - Photosynthetica 56: 150-162, 2018. Go to original source...
  48. Reifarth F., Christen G., Seeliger A.G. et al.: Modification of the water oxidizing complex in leaves of the dgd1 mutant of Arabidopsis thaliana deficient in the galactolipid digalactosyldiacylglycerol. - Biochemistry-US 36: 11769-11776, 1997. Go to original source...
  49. Rutherford A.W.: Photosystem II, the water-splitting enzyme. - Trends Biochem. Sci. 14: 227-232, 1989. Go to original source...
  50. Sakurai I., Mizusawa N., Wada H. et al.: Digalactosyldiacylglycerol is required for stabilization of the oxygen-evolving complex in photosystem II. - Plant Physiol. 145: 1361-1370, 2007. Go to original source...
  51. Sakurai I., Shen J.R., Leng J. et al.: Lipids in oxygen-evolving photosystem II complexes of cyanobacteria and higher plants. - J. Biochem. 140: 201-209, 2006. Go to original source...
  52. Schansker G., Tóth S.Z., Holzwarth A.R., Garab G.: Chlorophyll a fluorescence: Beyond the limits of the QA model. - Photosynth. Res. 120: 43-58, 2014. Go to original source...
  53. Schansker G., Tóth S.Z., Kovács L. et al.: Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. - BBA-Bioenergetics 1807: 1032-1043, 2011. Go to original source...
  54. Schreiber U., Bilger W., Neubauer C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. - In: Schulze E.-D., Caldwell M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49-70. Springer, Berlin-Heidelberg 1995. Go to original source...
  55. Sebban P., Wraight C.A.: Heterogeneity of the P+Q-A recombination kinetics in reaction centers from Rhodopseudomonas viridis: the effects of pH and temperature. - BBA-Bioenergetics 974: 54-65, 1989. Go to original source...
  56. Shen J.R., Inoue Y.: Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12-kDa protein, in cyanobacterial photosystem II. - Biochemistry-US 32: 1825-1832, 1993. Go to original source...
  57. Shen J.R., Kamiya N.: Crystallization and the crystal properties of the oxygen-evolving photosystem II from Synechococcus vulcanus. - Biochemistry-US 39: 14739-14744, 2000. Go to original source...
  58. Shen J.R., Kawakami K., Koike H.: Purification and crystallization of oxygen-evolving photosystem II core complex from thermophilic cyanobacteria. - In: Carpentier R. (ed.): Photosynthesis Research Protocols. Methods in Molecular Biology (Methods and Protocols). Vol. 684. Pp. 41-51. Humana Press, Totowa 2011. Go to original source...
  59. Shibata Y., Nishi S., Kawakami K. et al.: Photosystem II does not possess a simple excitation energy funnel: time-resolved fluorescence spectroscopy meets theory. - J. Am. Chem. Soc. 135: 6903-6914, 2013. Go to original source...
  60. Shlyk-Kerner O., Samish I., Kaftan D. et al.: Protein flexibility acclimatizes photosynthetic energy conversion to the ambient temperature. - Nature 442: 827-830, 2006. Go to original source...
  61. Siefermann D., Yamamoto H.Y.: Light-induced de-epoxidation of violaxanthin in lettuce chloroplasts IV. The effects of electron-transport conditions on violaxanthin availability. - BBA-Bioenergetics 387: 149-158, 1975. Go to original source...
  62. Sipka G., Magyar M., Mezzetti A. et al.: Light-adapted charge-separated state of photosystem II: Structural and functional dynamics of the closed reaction center. - Plant Cell 33: 1286-1302, 2021. Go to original source...
  63. Sipka G., Müller P., Brettel K. et al.: Redox transients of P680 associated with the incremental chlorophyll-a fluorescence yield rises elicited by a series of saturating flashes in diuron-treated photosystem II core complex of Thermosynechococcus vulcanus. - Physiol. Plantarum 166: 22-32, 2019. Go to original source...
  64. Sirohiwal A., Neese F., Pantazis D.A.: Chlorophyll excitation energies and structural stability of the CP47 antenna of photosystem II: a case study in the first-principles simulation of light-harvesting complexes. - Chem. Sci. 12: 4463-4476, 2021. Go to original source...
  65. Stirbet A.: Excitonic connectivity between photosystem II units: what is it, and how to measure it? - Photosynth. Res. 116: 189-214, 2013. Go to original source...
  66. Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll-a fluorescence transient in plants and cyanobacteria. - Photochem. Photobiol. 61: 32-42, 1995. Go to original source...
  67. Szczepaniak M., Sander J., Nowaczyk M. et al.: Charge separation, stabilization, and protein relaxation in photosystem II core particles with closed reaction center. - Biophys. J. 96: 621-631, 2009. Go to original source...
  68. Tang D.M., Jankowiak R., Seibert M., Small G.J.: Effects of detergent on the excited-state structure and relaxation dynamics of the photosystem II reaction center: A high-resolution hole burning study. - Photosynth. Res. 27: 19-29, 1991. Go to original source...
  69. Tiede D.M., Vázquez J., Córdova J., Marone P.A.: Time-resolved electrochromism associated with the formation of quinone anions in the Rhodobacter sphaeroides R26 reaction center. -Biochemistry-US 35: 10763-10775, 1996. Go to original source...
  70. Tóth S.Z., Schansker G., Strasser R.J.: A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. - Photosynth Res 93: 193-203, 2007. Go to original source...
  71. Umena Y., Kawakami K., Shen J.R. et al.: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. - Nature 473: 55-60, 2011. Go to original source...
  72. Valkunas L., Geacintov N.E., France L., Breton J.: The dependence of the shapes of fluorescence induction curves in chloroplasts on the duration of illumination pulses. - Biophys. J. 59: 397-408, 1991. Go to original source...
  73. van der Weij-de Wit C.D., Dekker J.P., van Grondelle R., van Stokkum I.H.M.: Charge separation is virtually irreversible in photosystem II core complexes with oxidized primary quinone acceptor. - J. Phys. Chem. A 115: 3947-3956, 2011. Go to original source...
  74. Vredenberg W.J.: Analysis of initial chlorophyll fluorescence induction kinetics in chloroplasts in terms of rate constants of donor side quenching release and electron trapping in photosystem II. - Photosynth. Res. 96: 83-97, 2008. Go to original source...
  75. Vredenberg W.: A simple routine for quantitative analysis of light and dark kinetics of photochemical and non-photochemical quenching of chlorophyll fluorescence in intact leaves. - Photosynth. Res. 124: 87-106, 2015. Go to original source...
  76. Vredenberg W., Prasil O.: On the polyphasic quenching kinetics of chlorophyll a fluorescence in algae after light pulses of variable length. - Photosynth. Res. 117: 321-337, 2013. Go to original source...
  77. Yamamoto H.Y., Higashi R.M.: Violaxanthin de-epoxidase: Lipid composition and substrate specificity. - Arch. Biochem. Biophys. 190: 514-522, 1978. Go to original source...