Photosynthetica 2022, 60(3):326-336 | DOI: 10.32615/ps.2022.023

Diurnal photosynthetic performance of two oak species from two provenances in a Mediterranean and a central European common garden

V. HOLLAND1, N. REININGER1, F. BANTIS1, W. BRÜGGEMANN1, 2, K. RADOGLOU3, M.N. FOTELLI4
1 Department of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Str. 13, D-60438 Frankfurt, Germany
2 Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, D-60325 Frankfurt, Germany
3 Department of Forestry and Management of Environment and Natural Resources, Pantazidou 193, GR-68200 Orestiada, Greece
4 Forest Research Institute, Hellenic Agricultural Organization Dimitra, Vassilika, GR-57006 Thessaloniki, Greece

Oaks may contribute to the stabilization of European forests under climate change. We utilized two common gardens established in contrasting growth regimes, in Greece (Olympiada) and Germany (Schwanheim), to compare the diurnal photosynthetic performance of a Greek and an Italian provenance of two Mediterranean oaks (Quercus pubescens and Q. frainetto) during the 2019 growing season. Although the higher radiation in the southern common garden led to a strong midday depression of chlorophyll a fluorescence parameters (maximum quantum efficiency of PSII, performance index on absorption basis), comparable light-saturated net photosynthetic rates were achieved in both study areas. Moreover, both species and provenances exhibited analogous responses. Q. pubescens had enhanced chlorophyll a fluorescence traits but similar photosynthetic rates compared to Q. frainetto, whereas the provenances did not differ. These findings indicate the high photosynthetic efficiency of both oaks under the current climate in Central Europe and their suitability for assisted migration schemes.

Additional key words: assisted migration; chlorophyll fluorescence; diurnal variation; gas exchange; Quercus frainetto; Quercus pubescens.

Received: February 3, 2022; Revised: April 11, 2022; Accepted: April 25, 2022; Prepublished online: May 12, 2022; Published: September 8, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
HOLLAND, V., REININGER, N., BANTIS, F., BRÜGGEMANN, W., RADOGLOU, K., & FOTELLI, M.N. (2022). Diurnal photosynthetic performance of two oak species from two provenances in a Mediterranean and a central European common garden. Photosynthetica60(3), 326-336. doi: 10.32615/ps.2022.023
Download citation

Supplementary files

Download fileHolland_2866_supplement.pdf

File size: 633.5 kB

References

  1. Adams W.W. III, Demmig-Adams B.: Chlorophyll fluorescence as a tool to monitor plant response to the environment. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp 583-604. Springer, Dordrecht 2004. Go to original source...
  2. Babst F., Poulter B., Trouet V. et al.: Site- and species-specific responses of forest growth to climate across the European continent. - Global Ecol. Biogeogr. 22: 706-717, 2013. Go to original source...
  3. Bantis F., Früchtenicht E., Graap J. et al.: The JIP-test as a tool for forestry in times of climate change. - Photosynthetica 58: 409-421, 2020. Go to original source...
  4. Bantis F., Graap J., Früchtenicht E. et al.: Field performances of Mediterranean oaks in replicate common gardens for future reforestation under climate change in central and southern Europe: first results from a four-year study. - Forests 12: 678, 2021. Go to original source...
  5. Bantis F., Radoglou K., Brüggemann W.: Differential ecophysio­logical responses to seasonal drought of three co-existing oak species in northern Greece. - Plant Biosyst. 153: 378-384, 2019. Go to original source...
  6. Baquedano F.J., Castillo F.J.: Drought tolerance in the Mediterranean species Quercus coccifera, Quercus ilex, Pinus halepensis, and Juniperus phoenicea. - Photosynthetica 45: 229-238, 2007. Go to original source...
  7. Boshier D., Broadhurst L., Cornelius J. et al.: Is local best? Examining the evidence for local adaptation in trees and its scale. - Environ. Evid. 4: 20, 2015. Go to original source...
  8. Both H., Brüggemann W.: Photosynthesis studies on European evergreen and deciduous oaks grown under Central European climate conditions. I: a case study of leaf development and seasonal variation of photosynthetic capacity in Quercus robur (L.), Q. ilex (L.) and their semideciduous hybrid, Q. × turneri (Willd.). - Trees-Struct. Funct. 23: 1081-1090, 2009. Go to original source...
  9. Bréda N., Huc R., Granier A., Dreyer D.: Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. -Ann. For. Sci. 63: 625-644, 2006. Go to original source...
  10. Brüggemann W., Bergmann M., Nierbauer K.U. et al.: Photo­synthesis studies on European evergreen and deciduous oaks grown under Central European climate conditions: II. Photoinhibitory and light-independent violaxanthin deepoxidation and downregulation of photosystem II in evergreen, winter-acclimated European Quercus taxa. - Trees-Struct. Funct. 23: 1091-1100, 2009. Go to original source...
  11. Bussotti F.: Quercus pubescens Willd. - In: Roloff A., Weisgerber H., Lang U.M. et al. (ed.): Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie, 12. [Encyclopedia of Woody Species: Handbook and Atlas of Dendrology, 12.] Pp. 1-10. Wiley-Vch Verlag, Weinheim 1998. [In German].
  12. Bussotti F., Pollastrini M., Holland V., Brüggemann W.: Functional traits and adaptive capacity of European forests to climate change. - Environ. Exp. Bot. 111: 91-113, 2015. Go to original source...
  13. Caldeira M.C., Ibáñez I., Nogueira C. et al.: Direct and indirect effects of tree canopy facilitation in the recruitment of Mediterranean oaks. - J. Appl. Ecol. 51: 349-358, 2014. Go to original source...
  14. Demmig-Adams B., Adams W.W. III, Winter K. et al.: Photochemical efficiency of photosystem II, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the midday depression of net CO2 uptake in Arbutus unedo growing in Portugal. - Planta 177: 377-387, 1989. Go to original source...
  15. Dorado-Liñán I., Piovesan G., Martínez-Sancho E. et al.: Geographical adaptation prevails over species-specific determinism in trees' vulnerability to climate change at Mediterranean rear-edge forests. - Glob. Change Biol. 25: 1296-1314, 2019. Go to original source...
  16. Epron D., Dreyer E.: Long-term effects of drought on photosynthesis of adult oak trees [Quercus petraea (Matt.) Liebl. and Quercus robur L.] in a natural stand. - New Phytol. 125: 381-389, 1993. Go to original source...
  17. Epron D., Dreyer E., Bréda N.: Photosynthesis of oak trees [Quercus petraea (Matt.) Liebl.] during drought under field conditions: diurnal course of net CO2 assimilation and photochemical efficiency of photosystem II. - Plant Cell Environ. 15: 809-820, 1992. Go to original source...
  18. Euro+Med: Euro+Med PlantBase - the information resource for Euro-Mediterranean plant diversity, 2006. http://ww2.bgbm.org/EuroPlusMed/ Accessed: 10 November 2021.
  19. Flores J.L.F., Jurado E.: Are nurse-protégé interactions more common among plants from arid environments? - J. Veg. Sci. 14: 911-916, 2003. Go to original source...
  20. Fotelli M.N., Lyrou F.G., Avtzis D.N. et al.: Effective defense of Aleppo pine against the giant scale Marchalina hellenica through ecophysiological and metabolic changes. - Front. Plant Sci. 11: 581693, 2020. Go to original source...
  21. Fotelli M.N., Radoglou K.M., Constantinidou E.-I.A.: Water stress responses of seedlings of four Mediterranean oak species. - Tree Physiol. 20: 1065-1075, 2000. Go to original source...
  22. Früchtenicht E., Neumann L., Klein N. et al.: Responses of Quercus robur and two potential climate change winners - Quercus pubescens and Quercus ilex - to two years of mid-growing season drought in a competition study: I - Tree water status. - Environ. Exp. Bot. 152: 107-117, 2018. Go to original source...
  23. García-Ruiz J.M., López-Moreno J.I., Vicente-Serrano S.M. et al.: Mediterranean water resources in a global change scenario. - Earth-Sci. Rev. 105: 121-139, 2011. Go to original source...
  24. Hanewinkel M., Cullmann D.A., Schelhaas M.-J. et al.: Climate change may cause severe loss in the economic value of European forest land. - Nat. Clim. Change 3: 203-207, 2013. Go to original source...
  25. Hickler T., Vohland K., Feehan J. et al.: Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. - Glob. Ecol. Biogeogr. 21: 50-63, 2012. Go to original source...
  26. Hoegh-Guldberg O., Jacob D., Taylor M. et al.: Impacts of 1.5°C global warming on natural and human systems. - In: Masson-Delmotte V., Zhai P., Pörtner H.O. et al. (ed.): Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Pp 175-311. IPCC, Geneva 2018.
  27. Holland V., Koller S., Brüggemann W.: Insight into the photosynthetic apparatus in evergreen and deciduous European oaks during end of growing season senescence using OJIP fluorescence transient analysis. - Plant Biol. 16: 801-808, 2014. Go to original source...
  28. Holland V., Koller S., Lukas S., Brüggemann W.: Drought- and frost-induced accumulation of soluble carbohydrates during accelerated senescence in Quercus pubescens. - Trees-Struct. Funct. 30: 215-226, 2016. Go to original source...
  29. IPCC: Summary for Policymakers. - In: Masson Delmotte V., Zhai P., Pirani A. et al. (ed.): Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 41. Cambridge University Press 2021.
  30. Jedmowski C., Ashoub A., Beckhaus T. et al.: Comparative analysis of Sorghum bicolor proteome in response to drought stress and following recovery. - Int. J. Proteomics 2014: 395905, 2014. Go to original source...
  31. Jedmowski C., Ashoub A., Momtaz O., Brüggemann W.: Impact of drought, heat, and their combination on chlorophyll fluo­rescence and yield of wild barley (Hordeum spontaneum). - J. Bot. 2015: 120868, 2015. Go to original source...
  32. Jiang C.-D., Shi L., Gao H.-Y. et al.: Development of photo­systems 2 and 1 during leaf growth in grapevine seedlings probed by chlorophyll a fluorescence transient and 820 nm transmission in vivo. - Photosynthetica 44: 454-463, 2006. Go to original source...
  33. Koller S., Holland V., Brüggemann W.: Seasonal monitoring of PSII functionality and relative chlorophyll content on a field site in two consecutive years: A case study of different oak species. - Photosynthetica 58: 379-390, 2020. Go to original source...
  34. Krause G.H., Virgo A., Winter K.: High susceptibility to photoinhibition of young leaves of tropical forest trees. - Planta 197: 583-591, 1995. Go to original source...
  35. Loarie S.R., Duffy P.B., Hamilton H. et al.: The velocity of climate change. - Nature 462: 1052-1055, 2009. Go to original source...
  36. Long S.P., Humphries S., Falkowski P.G.: Photoinhibition of photosynthesis in nature. - Annu. Rev. Plant Biol. 45: 633-662, 1994. Go to original source...
  37. Martín-Alcón S., Coll L., Ameztegui A.: Diversifying sub-Mediterranean pinewoods with oak species in a context of assisted migration: responses to local climate and light environment. - Appl. Veg. Sci. 19: 254-266, 2016. Go to original source...
  38. Matzner S.L., Rice K.J., Richards J.H.: Patterns of stomatal conductance among blue oak (Quercus douglasii) size classes and populations: implications for seedling establishment. - Tree Physiol. 23: 777-784, 2003. Go to original source...
  39. Morecroft M.D., Roberts J.M.: Photosynthesis and stomatal conductance of mature canopy Oak (Quercus robur) and Sycamore (Acer pseudoplatanus) trees throughout the growing season. - Funct. Ecol. 13: 332-342, 1999. Go to original source...
  40. Morecroft M.D., Stokes V.J., Morison J.I.L.: Seasonal changes in the photosynthetic capacity of canopy oak (Quercus robur) leaves: the impact of slow development on annual carbon uptake. - Int. J. Biometeorol. 4: 221-226, 2003. Go to original source...
  41. Ogaya R., Peñuelas R.: Comparative seasonal gas exchange and chlorophyll fluorescence of two dominant woody species in a Holm Oak Forest. - Flora 198: 132-141, 2003. Go to original source...
  42. Padhi B., Chauhan G., Kandoi D. et al.: A comparison of chlorophyll fluorescence transient measurements, using Handy PEA and FluorPen fluorometers. - Photosynthetica 59: 399-408, 2021. Go to original source...
  43. Pasta S., de Rigo D., Caudullo G.: Quercus pubescens in Europe: distribution, habitat, usage and threats. - In: San-Miguel-Ayanz J., de Rigo D., Caudullo G. et al. (ed.): European Atlas of Forest Tree Species. Pp. 156-157. Publication Office of the European Union, Luxembourg 2016.
  44. Peña-Rojas K., Aranda X., Fleck I.: Stomatal limitation to CO2 assimilation and down-regulation of photosynthesis in Quercus ilex resprouts in response to slowly imposed drought. - Tree Physiol. 247: 813-822, 2004. Go to original source...
  45. Pollastrini M., Holland V., Brüggemann W. et al.: Taxonomic and ecological relevance of the chlorophyll a fluorescence signature of tree species in mixed European forests. - New Phytol. 212: 51-65, 2016. Go to original source...
  46. Pollastrini M., Salvatori E., Fusaro L. et al.: Selection of tree species for forests under climate change: is PSI functioning a better predictor for net photosynthesis and growth than PSII? - Tree Physiol. 40: 1561-1571, 2020. Go to original source...
  47. Puletti N., Mattioli W., Bussotti F., Pollastrini M.: Monitoring the effects of extreme drought events on forest health by Sentinel-2 imagery. - J. Appl. Remote Sens. 13: 020501, 2019. Go to original source...
  48. Schroeder H., Nosenko T., Ghirardo A. et al.: Oaks as beacons of hope for threatened mixed forests in Central Europe. - Front. For. Glob. Change 4: 670797, 2021. Go to original source...
  49. Seidl R., Thom D., Kautz M. et al.: Forest disturbances under climate change. - Nat. Clim. Change 7: 394-402, 2017. Go to original source...
  50. Siam A.M.J., Radoglou K.M., Noitsakis B., Smiris P.: Physio­logical and growth responses of three Mediterranean oak species to different water availability regimes. - J. Arid Environ. 72: 583-592, 2008. Go to original source...
  51. Siam A.M.J., Radoglou K.M., Noitsakis B., Smiris P.: Differences in ecophysiological responses to mid-growing season drought between seedlings of three deciduous oak species. - Forest Ecol. Manag. 258: 35-42, 2009. Go to original source...
  52. Spinoni J., Vogt J.V., Naumann G. et al.: Will drought events become more frequent and severe in Europe? - Int. J. Climatol. 38: 1718-1736, 2018. Go to original source...
  53. Stojniæ S., Orloviæ S., Miljkoviæ D. et al.: Provenance plasticity of European beech leaf traits under differing environmental conditions at two Serbian common garden sites. - Eur. J. For. Res. 134: 1109-1125, 2015. Go to original source...
  54. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluores­cence transient as a tool to characterize and screen photosyn­thetic samples. - In: Mohanty P., Yunus M., Pathre U. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445-483. CRC Press, Boca Raton, Florida 2000.
  55. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  56. Strid A., Tan K.: Flora Hellenica. Pp. 547. Koeltz Scientific Books, Konigstein 1997.
  57. Süßel F., Brüggemann W.: Properties of secondary xylem of mature oaks in southwest Germany formed after extreme drought stress in summer 2018. - Trees Forests People 5: 100097, 2021.
  58. Tezara W., Marín O., Rengifo E. et al.: Photosynthesis and photoinhibition in two xerophytic shrubs during drought. - Photosynthetica 43: 37-45, 2005. Go to original source...
  59. Valladares F., Dobarro I., Sánchez-Gómez D., Pearcy R.W.: Photoinhibition and drought in Mediterranean woody saplings: scaling effects and interactions in sun and shade phenotypes. - J. Exp. Bot. 56: 483-494, 2005. Go to original source...
  60. Valladares F., Niinemets Ü.: Shade tolerance, a key plant feature of complex nature and consequences. - Annu. Rev. Ecol. Evol. Syst. 39: 237-257, 2008. Go to original source...
  61. Vayreda J., Martinez-Vilalta J., Gracia M. et al.: Anthropogenic-driven rapid shifts in tree distribution lead to increased dominance of broadleaf species. - Glob. Change Biol. 22: 3984-3995, 2016. Go to original source...
  62. Vitt P., Havens K., Kramer A.T. et al.: Assisted migration of plants: changes in latitudes, changes in attitudes. - Biol. Conserv. 143: 18-27, 2010. Go to original source...
  63. Wenden B., Mariadassou M., Chmielewski F.M., Vitasse Y.: Shifts in the temperature-sensitive periods for spring phenology in European beech and pedunculate oak clones across latitudes and over recent decades. - Glob. Change Biol. 26: 1808-1819, 2019. Go to original source...
  64. Werner C., Correia O., Beyschlag W.: Characteristic patterns of chronic and dynamic photoinhibition of different functional groups in a Mediterranean ecosystem. - Funct. Plant Biol. 29: 999-1011, 2002. Go to original source...
  65. Winder R., Nelson E., Beardmore T.: Ecological implications for assisted migration in Canadian forests. - For. Chron. 87: 731-744, 2011. Go to original source...
  66. Yang J.-D., Zhao H.-L., Zhang T.-H.: Diurnal patterns of net photosynthetic rate, stomatal conductance, and chlorophyll fluorescence in leaves of field-grown mungbean (Phaseolus radiatus) and millet (Setaria italica). - New Zeal. J. Crop Hort. 32: 273-279, 2004. Go to original source...
  67. Zhang S., Gao R.: Diurnal changes of gas exchange, chlorophyll fluorescence, and stomatal aperture of hybrid poplar clones subjected to midday light stress. - Photosynthetica 37: 559-571, 1999. Go to original source...
  68. Zhang S., Li Q., Ma K., Chen L.: Temperature-dependent gas exchange and stomatal/non-stomatal limitation to CO2 assimilation of Quercus liaotungensis under midday high irradiance. - Photosynthetica 39: 383-388, 2001. Go to original source...
  69. Zindros A., Radoglou K., Milios E., Kitikidou K.: Tree line shift in the Olympus Mountain (Greece) and climate change. - Forests 11: 985, 2020. Go to original source...