Photosynthetica 2023, 61(3):377-389 | DOI: 10.32615/ps.2023.031

Morphophysiological responses of Theobroma cacao L. rootstocks to flooding and post-flooding conditions

M.L.P.B. PINTO1, J. CRASQUE2, B. CERRI NETO2, T.R. FERREIRA2, C.A.S. SOUZA3, A.R. FALQUETO1, 2, T.C. DE SOUZA4, J.A. MACHADO FILHO5, L.O. ARANTES5, S. DOUSSEAU-ARANTES1, 2, 5
1 Post-graduation Program in Tropical Agriculture, Universidade Federal do Espírito Santo, Centro Universitário Norte do Espírito Santo, São Mateus, Espírito Santo, Brazil
2 Post-graduation Program in Plant Biology, Universidade Federal do Espírito Santo, Centro de Ciências Humanas e Naturais, Vitória, Espírito Santo, Brazil
3 Comissão Executiva do Plano da Lavoura Cacaueira, Linhares, Espírito Santo, Brazil
4 Instituto de Ciências da Natureza (ICN), Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
5 Centro de Pesquisa, Desenvolvimento e Inovação Norte, Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Linhares, Espírito Santo, Brazil

This study investigates how cocoa rootstocks respond to flooding and post-flooding conditions, offering insights for cocoa plantation sustainability in flood-prone areas due to climate change. We studied Theobroma cacao L. rootstocks for 60 d of flooding and 30 d post-flooding, grafting PS-1319 scions onto five rootstocks (TSH-1188, Cepec-2002, Pará, Esfip-02, SJ-02). Photochemical performance remained stable across rootstocks, while flooding progressively reduced electron transport efficiency. Photochemical damage emerged after 7 d, worsening occurred at 19 d. Although post-flooding efficiency improved, recovery time was insufficient for full restoration. Stem diameter increased less in Esfip-02. TSH-1188 had the highest stem dry mass during flooding and the most root and total dry mass during post-flooding. SJ-02 had the lowest stem dry mass and post-flooding total dry mass. Principal component analysis revealed stem and root development as a key for recovery. SJ-02 and Esfip-02 showed lower flooding tolerance and recovery, while TSH-1188 and Pará exhibited higher resilience.

Additional key words: cocoa; photosynthesis; plasticity; water stress.

Received: August 24, 2022; Revised: July 20, 2023; Accepted: August 15, 2023; Prepublished online: September 18, 2023; Published: October 5, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
PINTO, M.L.P.B., CRASQUE, J., CERRI NETO, B., FERREIRA, T.R., SOUZA, C.A.S., FALQUETO, A.R., ... DOUSSEAU-ARANTES, S. (2023). Morphophysiological responses of Theobroma cacao L. rootstocks to flooding and post-flooding conditions. Photosynthetica61(3), 377-389. doi: 10.32615/ps.2023.031
Download citation

References

  1. Almeida A.-A.F. de, Valle R.R.: Ecophysiology of the cacao tree. - Braz. J. Plant Physiol. 19: 425-448, 2007. Go to original source...
  2. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  3. Baker N.R., Rosenqvist E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. - J. Exp. Bot. 55: 1607-1621, 2004. Go to original source...
  4. Bangar P., Chaudhury A., Tiwari B. et al.: Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) Wilczek] varieties at different developmental stages under drought stress. - Turk. J. Biol. 43: 58-69, 2019. Go to original source...
  5. Bertolde F.Z., Almeida A.-A.F. de, Corrêa R.X. et al.: Molecular, physiological and morphological analysis of waterlogging tolerance in clonal genotypes of Theobroma cacao L. - Tree Physiol. 30: 56-67, 2010. Go to original source...
  6. Bertolde F.Z., Almeida A.-A.F., Pirovani C.P. et al.: Physiological and biochemical responses of Theobroma cacao L. genotypes to flooding. - Photosynthetica 50: 447-457, 2012. Go to original source...
  7. Bertolde F.Z., Almeida A.-A.F., Pirovani C.P.: Analysis of gene expression and proteomic profiles of clonal genotypes from Theobroma cacao subjected to soil flooding. - PLoS ONE 9: e108705, 2014. Go to original source...
  8. Bolhàr-Nordenkampf H.R., Long S.P., Baker N.R. et al.: Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. - Funct. Ecol. 3: 497-514, 1989. Go to original source...
  9. Colmer T.D., Voesenek L.A.C.J.: Flooding tolerance: suites of plants traits in variable environments. - Funct. Plant Biol. 36: 665-681, 2009. Go to original source...
  10. D±browski P., Baczewska-D±browska A.H., Kalaji H.M. et al.: Exploration of chlorophyll a fluorescence and plant gas exchange parameters as indicators of drought tolerance in perennial ryegrass. - Sensors 19: 2736, 2019. Go to original source...
  11. De Almeida J., Tezara W., Herrera A.: Physiological responses to drought and experimental water deficit and waterlogging of four clones of cacao (Theobroma cacao L.) selected for cultivation in Venezuela. - Agr. Water Manage. 171: 80-88, 2016. Go to original source...
  12. Delgado C., Penn J., Couturier G.: Status of cacao trees following seasonal floods in major watersheds of the Peruvian Amazon. -Agric. Sci. 4: 15-24, 2016. Go to original source...
  13. Demmig-Adams B., Adams III W.W.: Photoprotection and other responses of plants to high light stress. - Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 599-626, 1992. Go to original source...
  14. Dias D.P., Marenco R.A.: Photoinhibition of photosynthesis in Minquartia guianensis and Swietenia macrophylla inferred by monitoring the initial fluorescence. - Photosynthetica 44: 235-240, 2006. Go to original source...
  15. Domec J.-C., King J.S., Carmichael M.J. et al.: Aquaporins, and not changes in root structure, provide new insights into physiological responses to drought, flooding, and salinity. - J. Exp. Bot. 72: 4489-4501, 2021. Go to original source...
  16. Ferreira D.F.: Sisvar: a computer statistical analysis system. - Ciênc. Agrotec. 35: 1039-1042, 2011. Go to original source...
  17. Fritz K.M., Evans M.A., Feminella J.W.: Factors affecting biomass allocation in the riverine macrophyte Justicia americana. - Aquat. Bot. 78: 279-288, 2004. Go to original source...
  18. Gonçalves J.F.C., Santos Jr. U.M., Nina Jr. A.R., Chevreuil L.R.: Energetic flux and performance index in copaiba (Copaifera multijuga Hayne) and mahogany (Swietenia macrophylla King) seedlings grown under two irradiance environments. - Braz. J. Plant Physiol. 19: 171-184, 2007. Go to original source...
  19. Hazrati S., Tahmasebi-Sarvestani Z., Modarres-Sanavy S.A.M. et al.: Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. - Plant Physiol. Biochem. 106: 141-148, 2016. Go to original source...
  20. Ishida F.Y., Oliveira L.E.M., Carvalho C.J.R., Alves J.D.: [Effects of flooding and submergence on growth, chlorophyll content and leaf fluorescence of Setaria anceps and Paspalum repens plants.] - Ciênc. Agrotec. 26: 1152-1159, 2002. [In Portuguese]
  21. Kalaji H.M., Oukarroum A., Alexandrov V. et al.: Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. - Plant Physiol. Biochem. 81: 16-25, 2014. Go to original source...
  22. Kalaji H.M., Raèková L., Paganová V. et al.: Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? - Environ. Exp. Bot. 152: 149-157, 2018a. Go to original source...
  23. Kalaji M., Rastogi A., ®ivèák M. et al.: Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. - Photosynthetica 56: 953-961, 2018b. Go to original source...
  24. Kang S., Park W.J., Moon Y.E. et al.: Scion root pruning affects leaf C/N ratio and physiological performance of 'Shiranuhi' mandarin trees grown in a greenhouse. - Sci. Hortic.-Amsterdam 253: 42-48, 2019. Go to original source...
  25. Kolb R.M., Medri M.E., Bianchini E. et al.: [Ecological anatomy of Sebastiania commersoniana (Baillon) Smith & Downs (Euphorbiaceae) submitted to flooding.] - Braz. J. Bot. 21: 305-312, 1998. [In Portuguese] Go to original source...
  26. Lahive F., Hadley P., Daymond A.J.: The physiological responses of cacao to the environment and the implications for climate change resilience. A review. - Agron. Sustain. Dev. 39: 5, 2019. Go to original source...
  27. Li Z., Bai D., Zhong Y. et al.: Physiological responses of two contrasting kiwifruit (Actinidia spp.) rootstocks against waterlogging stress. - Plants-Basel 10: 2586, 2021. Go to original source...
  28. Lin Z.-H., Chen L.-S., Chen R.-B. et al.: CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbo­hydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply. - BMC Plant Biol. 9: 43, 2009. Go to original source...
  29. Liu Y., Lei S.G., Cheng L.S. et al.: Leaf photosynthesis of three typical plant species affected by the subsidence cracks of coal mining: a case study in the semiarid region of Western China. - Photosynthetica 57: 75-85, 2019. Go to original source...
  30. Martins J.P.R., Schimildt E.R., Alexandre R.S. et al.: Chlorophyll a fluorescence and growth of Neoregelia concentrica (Bromeliaceae) during acclimatization in response to light levels. - In Vitro Cell. Dev.-Pl. 51: 471-481, 2015. Go to original source...
  31. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  32. Mielke M.S., Almeida A.-A.F. de, Gomes F.P. et al.: Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. - Environ. Exp. Bot. 50: 221-231, 2003. Go to original source...
  33. Mozo I., Rodríguez M.E., Monteoliva S., Luquez V.M.C.: Floodwater depth causes different physiological responses during post-flooding in willows. - Front. Plant Sci. 12: 575090, 2021. Go to original source...
  34. Nascimento M.E., Cunha R.L.M., Galvão J.R. et al.: [Morphoanatomic and physiological aspects of Swietenia macrophylla King submitted to two flood conditions.] - Braz. J. Agric. 90: 237-249, 2015. [In Portuguese] Go to original source...
  35. Nasrullah, Ali S., Umar M. et al.: Flooding tolerance in plants: from physiological and molecular perspectives. - Braz. J. Bot. 45: 1161-1176, 2022. Go to original source...
  36. Oliveira J.G. de, Alves P.L.C.A., Magalhães A.C.: The effect of chilling on the photosynthetic activity in coffee (Coffea arabica L.) seedlings: The protective action of chloroplastid pigments. - Braz. J. Plant Physiol. 14: 95-104, 2002. Go to original source...
  37. Oukarroum A., Schansker G., Strasser R.J.: Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. - Physiol. Plantarum 137: 188-199, 2009. Go to original source...
  38. Parad G.A., Kouchaksaraei M.T., Striker G.G. et al.: Growth, morphology and gas exchange responses of two-year-old Quercus castaneifolia seedlings to flooding stress. - Scand. J. Forest Res. 31: 458-466, 2016. Go to original source...
  39. Pires A.P.F., Srivastava D.S., Marino N.A.C. et al.: Interactive effects of climate change and biodiversity loss on ecosystem functioning. - Ecology 99: 1203-1213, 2018. Go to original source...
  40. Pivovaroff A.L., Sack L., Santiago L.S.: Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis. - New Phytol. 203: 842-850, 2014. Go to original source...
  41. Prawoto A.A., Zainunnuroni M., Slameto: Response of selected clones of cocoa seedlings in the nursery against high soil water content. - Pelita Perkebunan 21: 90-105, 2005. Go to original source...
  42. Rathod S., Brestic M., Shao H.: Chlorophyll a fluorescence determines the drought resistance capabilities in two varieties of mycorrhized and non-mycorrhized Glycine max Linn. - Afr. J. Microbiol. Res. 5: 4197-4206, 2011. Go to original source...
  43. Rehem B.C., Almeida A.-A.F. de, Mielke M.S., Gomes F.P.: [Effects of substrate flooding on growth and chemical composition of Theobroma cacao L. clonal genotypes.] - Rev. Bras. Frutic. 31: 805-815, 2009. [In Portuguese] Go to original source...
  44. Ribeiro M.A.Q., Almeida A.-A.F. de, Alves T.F.O. et al.: Rootstock × scion interactions on Theobroma cacao resistance to witches' broom: photosynthetic, nutritional and antioxidant metabolism responses. - Acta Physiol. Plant. 38: 73, 2016. Go to original source...
  45. Ronchi C.P., DaMatta F.M., Batista K.D. et al.: Growth and photosynthetic down-regulation in Coffea arabica in response to restricted root volume. - Funct. Plant Biol. 33: 1013-1023, 2006. Go to original source...
  46. Sena Gomes A.R., Kozlowski T.T.: The effects of flooding on water relations and growth of Theobroma cacao var. catongo seedlings. - J. Hortic. Sci. 61: 265-276, 1986. Go to original source...
  47. Shamshiri M.H., Fattahi M.: Effects of arbuscular mycorrhizal fungi on photosystem II activity of three pistachio rootstocks under salt stress as probed by the OJIP-test. - Russ. J. Plant Physiol. 63: 101-110, 2016. Go to original source...
  48. Silva Branco M.C. da, Almeida A.-A.F. de, Dalmolin Â.C. et al.: Influence of low light intensity and soil flooding on cacao physiology. - Sci. Hortic.-Amsterdam 217: 243-257, 2017. Go to original source...
  49. Souza R.P., Machado E.C., Silva J.A.B. et al.: Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. - Environ. Exp. Bot. 51: 45-56, 2004. Go to original source...
  50. Strasser B.J., Strasser R.J.: Measuring fast fluorescence transients to address environmental questions: the JIP test. - In: Mathis P. (ed.): Photosynthesis: From Light to Biosphere. Vol. 5. Pp. 977-980. Kluwer Academic Publishers, Dordrecht 1995. Go to original source...
  51. Yeung E., Bailey-Serres J., Sasidharan R.: After the deluge: plant revival post-flooding. - Trends Plant Sci. 24: 443-454, 2019. Go to original source...
  52. Zhang H., Feng P., Yang W. et al.: Effects of flooding stress on the photosynthetic apparatus of leaves of two Physocarpus cultivars. - J. Forestry Res. 29: 1049-1059, 2018. Go to original source...
  53. Zhang Y., Liu G., Dong H., Li C.: Waterlogging stress in cotton: Damage, adaptability, alleviation strategies, and mechanisms. -Crop J. 9: 257-270, 2021. Go to original source...
  54. Zimmermann A.P.L., Fleig F.D., Tabaldi L.A., Aimi S.C.: Morphological and physiological plasticity of saplings of Cabralea canjerana (Vell.) Mart. in different light conditions. -Rev. Árvore 43: e430103, 2019. Go to original source...
  55. Zotz G., Wilhelm K., Becker A.: Heteroblasty - a review. - Bot. Rev. 77: 109-151, 2011. Go to original source...