Photosynthetica 2023, 61(4):465-472 | DOI: 10.32615/ps.2023.041

Photosynthetic reaction center/graphene bio-hybrid for low-power optoelectronics

J. VUJIN1, T. SZABÓ2, R. PANAJOTOVIC1, A.G. VÉGH3, L. RINYU4, L. NAGY2, 5
1 Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
2 Institute of Medical Physics and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary
3 HUN-REN Biological Research Centre, Szeged, Institute of Biophysics, Temesvári Krt. 62, Szeged, Hungary
4 Isotope Climatology and Environmental Research Centre (ICER), HUN-REN Institute for Nuclear Research, Bem tér 18/c, 4026 Debrecen, Hungary
5 HUN-REN Biological Research Centre, Szeged, Institute of Plant Biology, Temesvári Krt. 62, Szeged, Hungary

Photosynthetic reaction center (pRC) purified from Rhodobacter sphaeroides 2.4.1 purple bacteria was deposited on a graphene carrier exfoliated from the liquid phase and layered on the surface of SiO2/Si substrate for optoelectronic application. Light-induced changes in the drain-source current vs. gate voltage are demonstrated. Dried photosynthetic reaction centers/graphene composite on SiO2/Si shows a photochemical/-physical activity, as a result of interaction with the current flow in the graphene carrier matrix. The current changes are sensitive to light, due to the contribution from the charge separation in the pRC, and to the applied gate and drain-source voltages.

Additional key words: field effect; graphene; liquid-phase exfoliation; optoelectronics; photosynthetic reaction center.

Received: September 11, 2023; Revised: October 25, 2023; Accepted: November 2, 2023; Prepublished online: November 10, 2023; Published: December 19, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
VUJIN, J., SZABÓ, T., PANAJOTOVIC, R., VÉGH, A.G., RINYU, L., & NAGY, L. (2023). Photosynthetic reaction center/graphene bio-hybrid for low-power optoelectronics. Photosynthetica61(SPECIAL ISSUE 2023-2), 465-472. doi: 10.32615/ps.2023.041
Download citation

References

  1. Adar F.: Interpretation of Raman spectrum of proteins. - Spectroscopy 37: 9-13, 2022. Go to original source...
  2. Allen J.P., Chamberlain K.D., Olson T.L., Williams J.C.: A bound iron porphyrin is redox active in hybrid bacterial reaction centers modified to possess a four-helix bundle domain. - Photoch. Photobio. Sci. 21: 91-99, 2022. Go to original source...
  3. Altamura E., Albanese P., Marotta R., Mavelli F.: Chromatophores efficiently promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment artificial cells. -PNAS 118: e2012170118, 2021. Go to original source...
  4. Andronescu C., Schuhmann W.: Graphene-based field effect transistors as biosensors. - Curr. Opin. Electrochem. 3: 11-17, 2017. Go to original source...
  5. Blake P., Brimicombe P.D., Nair R.R. et al.: Graphene-based liquid crystal device. - Nano Lett. 8: 1704-1708, 2008. Go to original source...
  6. Clayton R.K.: Effects of dehydration on reaction centers from Rhodopseudomonas sphaeroides. - BBA-Bioenergetics 504: 255-264, 1978. Go to original source...
  7. Cogdell R.J., Gardiner A.T., Molina P.I., Cronin L.: The use and misuse of photosynthesis in the quest for novel methods to harness solar energy to make fuel. - Philos. T. Roy. Soc. B 371: 20110603, 2013. Go to original source...
  8. Coleman J.N.: Liquid exfoliation of defect-free graphene. - Acc. Chem. Res. 46: 14-22, 2013. Go to original source...
  9. Csiki R., Drieschner S., Lyuleeva A. et al.: Photocurrent generation of biohybrid systems based on bacterial reaction centers and graphene electrodes. - Diam. Relat. Mater. 89: 286-292, 2018. Go to original source...
  10. Daliento D., Chouder A., Guerriero P. et al.: Monitoring, diagnosis, and power forecasting for photovoltaic fields: a review. - Int. J. Photoenergy 2017: 1356851, 2017. Go to original source...
  11. Darder M., Aranda P., Ruiz-Hitzky E.: Bionanocomposites: a new concept of ecological, bioinspired and functional hybrid materials. - Adv. Mater. 19: 1309-1319, 2007. Go to original source...
  12. Di Lauro M., la Gatta S., Bortolotti C.A. et al.: A bacterial photosynthetic enzymatic unit modulating organic transistors with light. - Adv. Electron. Mater. 6: 1900888, 2020. Go to original source...
  13. Dorogi M., Bálint Z., Mikó C. et al.: Stabilization effect of single-walled carbon nanotubes on the functioning of photosynthetic reaction centers. - J. Phys. Chem. B 110: 21473-21479, 2006. Go to original source...
  14. Geim A.K.: Graphene: status and prospects. - Science 324: 1530-1534, 2009. Go to original source...
  15. Geim A.K., Novoselov K.S.: The rise of graphene. - Nat. Mater. 6: 183-191, 2007. Go to original source...
  16. Giraldo J.P., Landry M.P., Faltermeier S.M. et al.: Plant nanobionics approach to augment photosynthesis and biochemical sensing. - Nat. Mater. 13: 400-408, 2014. Go to original source...
  17. Hajdu K., Balderas-Valadez R.F., Carlino A. et al.: Porous silicon pillar structures/photosynthetic reaction centre protein hybrid for bioelectronic applications. - Photoch. Photobio. Sci. 21: 13-22, 2021. Go to original source...
  18. Hajdu K., Szabó T., Magyar M. et al.: Photosynthetic reaction center protein in nanostructures. - Phys. Status Solidi B 248: 2700-2703, 2011. Go to original source...
  19. Hajdu K., Szabó T., Sarrai A.E. et al.: Functional nanohybrid materials from photosynthetic reaction center proteins. - Int. J. Photoenergy 2017: 9128291, 2017. Go to original source...
  20. Hartmann V., Kothe T., Pöler S. et al.: Redox hydrogels with adjusted redox potential for improved efficiency in Z-scheme inspired biophotovoltaic cells. - Phys. Chem. Chem. Phys. 16: 11936-11941, 2014. Go to original source...
  21. Heifler O., Carmeli C., Carmeli I.: Chemical tagging of membrane proteins enables oriented binding on solid surfaces. - Langmuir 36: 4556-4562, 2020. Go to original source...
  22. Hrubý J., Vavrečková ©., Masaryk L. et al.: Deposition of tetracoordinate Co(II) complex with chalcone ligands on graphene. - Molecules 25: 5021, 2020. Go to original source...
  23. Jones M.R.: The petite purple photosynthetic powerpack. - Biochem. Soc. T. 37: 400-407, 2009. Go to original source...
  24. Kim H., Mattevi C., Kim H.J. et al.: Optoelectronic properties of graphene thin films deposited by a Langmuir-Blodgett assembly. - Nanoscale 5: 12365-12374, 2013. Go to original source...
  25. Kim K.S., Zhao Y., Jang H. et al.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. - Nature 457: 706-710, 2009. Go to original source...
  26. Li X., Zhu Y., Cai W. et al.: Transfer of large-area graphene films for high-performance transparent conductive electrodes. - Nano Lett. 9: 4359-4363, 2009. Go to original source...
  27. Luka G., Ahmadi A., Najjaran H. et al.: Microfluidics integrated biosensors: a leading technology towards lab-on-a-chip and sensing applications. - Sensors-Basel 15: 30011-30031, 2015. Go to original source...
  28. Magyar M., Hajdu K. Szabó T. et al.: Long term stabilization of reaction center protein photochemistry by carbon nanotubes. -Phys. Status Solidi B 248: 2454-2457, 2011. Go to original source...
  29. Magyar M., Hajdu K., Szabó T. et al.: Sensing hydrogen peroxide by carbon nanotube/horse radish peroxidase bio-nanocomposite. - Phys. Status Solidi B 250: 2559-2563, 2013. Go to original source...
  30. Magyar M., Rinyu L., Janovics R. et al.: Real-time sensing of hydrogen peroxide by ITO/MWCNT/horseradish peroxidase enzyme electrode. - J. Nanomater. 2016: 2437873, 2016. Go to original source...
  31. Matković A., Miloąević I., Milićević M. et al.: Enhanced sheet conductivity of Langmuir-Blodgett assembled graphene thin films by chemical doping. - 2D Materials 3: 015002, 2016. Go to original source...
  32. Nagy L., Hajdu K., Fisher B. et al.: Photosynthetic reaction centres - from basic research to application possibilities. - Not. Sci. Biol. 2: 7-13, 2010. Go to original source...
  33. Nagy L., Kiss V., Brumfeld V. et al.: Thermal effects and structural changes of photosynthetic reaction centers characterized by wide frequency band hydrophone: Effects of carotenoids and terbutryn. - Photochem. Photobiol. 91: 1368-1375, 2015. Go to original source...
  34. Nagy L., Magyar M.: No alternatives to photosynthesis: from molecules to nanostructures. - In: Jeschke P., Starikov E.B. (ed.): Agricultural Biocatalysis: Theoretical Studies and Photosynthesis Aspects. Pp. 210-247. Jenny Stanford Publishing, New York 2022. Go to original source...
  35. Nagy L., Magyar M., Szabó T. et al.: Photosynthetic machineries in nano-systems. - Curr. Protein Pept. Sci. 15: 363-373, 2014. Go to original source...
  36. Okamura M.Y., Isaacson R.A., Feher G.: Primary acceptor in bacterial photosynthesis: obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas sphaeroides. - PNAS 72: 3491-3495, 1975. Go to original source...
  37. Palazzo G., Francia F., Mallardi A. et al.: Water activity regulates the QA- to QB electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides. - J. Am. Chem. Soc. 130: 9353-9363, 2008. Go to original source...
  38. Rafferty C.N., Clayton R.K.: Linear dichroism and the orientation of reaction centers of Rhodopseudomonas sphaeroides in dried gelatin films. - BBA-Bioenergetics 545: 106-121, 1979. Go to original source...
  39. Robert B.: Resonance Raman studies of bacterial reaction centers. - BBA-Bioenergetics 1017: 99-111, 1990. Go to original source...
  40. Ryu D.H., Kim Y.J., Kim S.I. et al.: Thylakoid-deposited micro-pillar electrodes for enhanced direct extraction of photosynthetic electrons. - Nanomaterials 8: 189, 2018. Go to original source...
  41. Shoseyov O., Levy I.: NanoBioTechnology: BioInspired Devices and Materials of the Future. Pp. 485. Humana Press, Totowa 2008.
  42. Szabó T., Bencsik G., Magyar M. et al.: Photosynthetic reaction centers/ITO hybrid nanostructure. - Mater. Sci. Eng. C 33: 769-773, 2013. Go to original source...
  43. Szabó T., Csekő R., Hajdu K. et al.: Sensing photosynthetic herbicides in an electrochemical flow cell. - Photosynth. Res. 132: 127-134, 2017. Go to original source...
  44. Szabó T., Magyar M., Hajdu K. et al.: Structural and functional hierarchy in photosynthetic energy conversion - from molecules to nanostructures. - Nanoscale Res. Lett. 10: 458, 2015. Go to original source...
  45. Szabó T., Panajotović R., Vujin J. et al.: Photosynthetic reaction-center/graphene biohybrid for optoelectronics. - J. Nanosci. Nanotechnol. 21: 2342-2350, 2021. Go to original source...
  46. Szőke Á.F., Szabó G.S., Hórvölgyi Z. et al.: Accumulation of 2-acetylamino-5-mercapto-1,3,4-thiadiazole in chitosan coatings for improved anticorrosive effect on zinc. - Int. J. Biol. Macromol. 142: 423-431, 2020.
  47. Takshi A., Yaghoubi H., Wang J. et al.: Electrochemical field-effect transistor utilization to study the coupling success rate of photosynthetic protein complexes to cytochrome c. - Biosensors 7: 16, 2017. Go to original source...
  48. Tamiaki H., Nishihara K., Shibata R.: Synthesis of self-aggregative zinc chlorophylls possessing polymerizable esters as a stable model compound for main light-harvesting antennas of green photosynthetic bacteria. - Int. J. Photoenergy 2006: 090989, 2006. Go to original source...
  49. Tandori J., Nagy L., Maróti P.: Semiquinone oscillation as a probe of quinone/herbicide binding in bacterial reaction centers. - Photosynthetica 25: 159-166, 1991.
  50. Tandori J., Nagy L., Puskás A. et al.: The IleL229 → Met mutation impairs the quinone binding to the QB-pocket in reaction centers of Rhodobacter sphaeroides. - Photosynth. Res. 45: 135-146, 1995. Go to original source...
  51. Tangorra R.R., Antonucci A., Milano F. et al.: Photoactive film by covalent immobilization of a bacterial photosynthetic protein on reduced graphene oxide surface. - MRS Online Proceedings Library 1717: 12-18, 2014. Go to original source...
  52. Tomaąević-Ilić T., Peąić J., Miloąević I. et al.: Transparent and conductive films from liquid phase exfoliated graphene. - Opt. Quant. Electron. 48: 319, 2016. Go to original source...
  53. Vermeglio A., Clayton R.K.: Orientation of chromophores in reaction centers of Rhodopseudomonas sphaeroides. Evidence for two absorption bands of the dimeric primary electron donor. - BBA-Bioenergetics 449: 500-515, 1976. Go to original source...
  54. Wang X., Zhi L., Müllen K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. - Nano Lett. 8: 323-327, 2008. Go to original source...
  55. Warncke K., Dutton P.L.: Experimental resolution of the free energies of aqueous solvation contributions to ligand-protein binding: quinone-QA site interactions in the photosynthetic reaction center protein. - PNAS 90: 2920-2924, 1993. Go to original source...
  56. Wraight C.A., Clayton R.K.: The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centres of Rhodopseudomonas sphaeroides. - BBA-Bioenergetics 333: 246-260, 1974. Go to original source...
  57. Xua J., Bhattacharya P., Váró G.: Monolithically integrated bacteriorhodopsin/semiconductor opto-electronic integrated circuit for a bio-photoreceiver. - Biosens. Bioelectron. 19: 885-892, 2004. Go to original source...
  58. Zhang H., Carey A.-M., Jeon K.-W. et al.: A highly stable and scalable photosynthetic reaction center-graphene hybrid electrode system for biomimetic solar energy transduction. - J. Mater. Chem. A 5: 6038-6041, 2017. Go to original source...