Photosynthetica 2024, 62(1):102-111 | DOI: 10.32615/ps.2024.003

Physiological and molecular characteristics associated with the anti-senescence in Camellia oleifera Abel.

Z. ZHANG1, †, Y.M. XU1, †, Z.L. HE1, C.X. LIU1, R. WANG1, X.N. WANG1, Y.H. PENG1, L.S. CHEN1, S.F. PENG1, L. MA1, Z.G. LI1, W. TANG1, Y.Z. CHEN1, J. CHEN2, X.H. YANG1
1 Hunan Academy of Forestry, National Research Center of Oil-tea Engineering Technology, 410004 Changsha, China
2 Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Science, University of Florida, 32703 Apopka, USA

This study analyzed physiological and molecular characteristics associated with the resistance to aging or anti-senescence in Camellia oleifera Abel. Trees over 100 years old (ancient trees) were compared with those about 30 years old (mature trees). Total chlorophylls, chlorophyll a/b ratio, and hydrogen peroxide concentrations in ancient tree leaves were significantly higher than in their counterparts. Significantly higher activities of superoxide dismutase, peroxidase, and catalase were detected in ancient tree leaves. Nine Chl a/b-binding protein genes, 15 antioxidant enzyme genes, 21 hormone-related genes, and 301 stress-related genes were upregulated, and 42 protein-degradation genes were downregulated in ancient tree leaves. By increasing chlorophyll content and antioxidant enzyme activities and regulating the ageing-related genes expression, ancient C. oleifera leaves maintained remarkable vitality. Although further research is needed, our study may shed some light on how ancient C. oleifera trees can resist ageing and sustain their healthy growth.

Additional key words: anti-ageing; anti-senescence; Camellia oleifera; plant senescence.

Received: August 28, 2023; Revised: November 20, 2023; Accepted: January 10, 2024; Prepublished online: February 5, 2024; Published: February 22, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ZHANG, Z., XU, Y.M., HE, Z.L., LIU, C.X., WANG, R., WANG, X.N., ... YANG, X.H. (2024). Physiological and molecular characteristics associated with the anti-senescence in Camellia oleifera Abel. . Photosynthetica62(1), 102-111. doi: 10.32615/ps.2024.003
Download citation

References

  1. Arnon D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. - Plant Physiol. 24: 1-15, 1949. Go to original source...
  2. Balazadeh S., Siddiqui H., Allu A.D. et al.: A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. - Plant J. 62: 250-264, 2010. Go to original source...
  3. Batalova A.Y., Krutovsky K.V.: Genetic and epigenetic mechanisms of longevity in forest trees. - Int. J. Mol. Sci. 24: 10403, 2023. Go to original source...
  4. Bresson J., Bieker S., Riester L. et al.: A guideline for leaf senescence analyses: from quantification to physiological and molecular investigations. - J. Exp. Bot. 69: 769-786, 2018. Go to original source...
  5. Chang E., Zhang J., Yao X. et al.: De novo characterization of the Platycladus orientalis transcriptome and analysis of photosynthesis-related genes during aging. - Forests 10: 393, 2019. Go to original source...
  6. Chen D., Wang S., Xiong B. et al.: Carbon/nitrogen imbalance associated with drought-induced leaf senescence in Sorghum bicolor. - PLoS ONE 10: e0137026, 2015b. Go to original source...
  7. Chen Y., Dong H.: Mechanisms and regulation of senescence and maturity performance in cotton. - Field Crop. Res. 189: 1-9, 2016. Go to original source...
  8. Chen Y., Wang B., Chen J. et al.: Identification of Rubisco rbcL and rbcS in Camellia oleifera and their potential as molecular markers for selection of high tea oil cultivars. - Front. Plant Sci. 6: 189, 2015a. Go to original source...
  9. Chen Y., Xu Y., Luo W. et al.: The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes, including leaf senescence, in rice. - Plant Physiol. 163: 1673-1685, 2013. Go to original source...
  10. Chinchilla D., Zipfel C., Robatzek S. et al.: A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. - Nature 448: 497-500, 2007. Go to original source...
  11. Cruz de Carvalho M.H., d'Arcy-Lameta A., Roy-Macauley H. et al.: Aspartic protease in leaves of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata L. Walp): enzymatic activity, gene expression and relation to drought susceptibility. - FEBS Lett. 492: 242-246, 2001.
  12. Dai X., Xu Y., Ma Q. et al.: Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. - Plant Physiol. 143: 1739-1751, 2007. Go to original source...
  13. Dar R.A., Nisar S., Tahir I.: Ethylene: A key player in ethylene sensitive flower senescence: A review. - Sci. Hortic.-Amsterdam 290: 110491, 2021. Go to original source...
  14. Diaz-Mendoza M., Velasco-Arroyo B., Santamaria M.E. et al.: Plant senescence and proteolysis: two processes with one destiny. - Genet. Mol. Biol. 39: 329-338, 2016. Go to original source...
  15. Ding Z., Li S., An X. et al.: Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. - J. Genet. Genomics 36: 17-29, 2009. Go to original source...
  16. Dong H., Niu Y., Li W., Zhang D.: Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. - J. Exp. Bot. 59: 1295-1304, 2008. Go to original source...
  17. Espinoza C., Medina C., Somerville S., Arce-Johnson P.: Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. - J. Exp. Bot. 58: 3197-3212, 2007. Go to original source...
  18. Fujii H., Zhu J.-K.: Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. - PNAS 106: 8380-8385, 2009. Go to original source...
  19. Gao F., Chen J.-M., Xiong A.-S. et al.: Isolation and characterization of a novel AP2/EREBP-type transcription factor OsAP211 in Oryza sativa. - Biol. Plantarum 53: 643-649, 2009. Go to original source...
  20. Goff K.E., Ramonell K.M.: The role and regulation of receptor-like kinases in plant defense. - Gene Regul. Syst. Biol. 1: 167-175, 2007. Go to original source...
  21. Guo Y., Gan S.: AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis. - Plant Physiol. 156: 1612-1619, 2011. Go to original source...
  22. Guo Y., Ren G., Zhang K. et al.: Leaf senescence: progression, regulation, and application. - Mol. Hortic. 1: 5, 2021. Go to original source...
  23. Gupta S., Garg V., Kant C., Bhatia S.: Genome-wide survey and expression analysis of F-box genes in chickpea. - BMC Genomics 16: 67, 2015. Go to original source...
  24. Gupta S.K., Rai A.K., Kanwar S.S., Sharma T.R.: Comparative analysis of zinc finger proteins involved in plant disease resistance. - PLoS ONE 7: e42578, 2012. Go to original source...
  25. Heath R.L., Packer L.: Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. - Arch. Biochem. Biophys. 125: 189-198, 1968. Go to original source...
  26. Ho H.J.: Functional roles of plant protein kinases in signal transduction pathways during abiotic and biotic stress. - J. Biodivers. Biopros. Dev. 2: 147, 2015.
  27. Hou K., Wu W., Gan S.-S.: SAUR36, a SMALL AUXIN UP RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. - Plant Physiol. 161: 1002-1009, 2013. Go to original source...
  28. Huang X.-S., Wang W., Zhang Q. et al.: A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. - Plant Physiol. 162: 1178-1194, 2013. Go to original source...
  29. Jacob P., Hirt H., Bendahmane A.: The heat-shock protein/chaperone network and multiple stress resistance. - Plant Biotechnol. J. 15: 405-414, 2017. Go to original source...
  30. Jakhar S., Mukherjee D.: Chloroplast pigments, proteins, lipid peroxidation and activities of antioxidative enzymes during maturation and senescence of leaves and reproductive organs of Cajanus cajan L. - Physiol. Mol. Biol. Plants 20: 171-180, 2014. Go to original source...
  31. Jeworutzki E., Roelfsema M.R.G., Anschütz U. et al.: Early signaling through the Arabidopsis pattern recognition receptors FLS2 and EFR involves Ca2+-associated opening of plasma membrane anion channels. - Plant J. 62: 367-378, 2010. Go to original source...
  32. Kim J.I., Murphy A.S., Baek D. et al.: YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. - J. Exp. Bot. 62: 3981-3992, 2011. Go to original source...
  33. Klime¹ová J., Nobis M.P., Herben T.: Senescence, ageing and death of the whole plant: morphological prerequisites and constraints of plant immortality. - New Phytol. 206: 14-18, 2015. Go to original source...
  34. Kong X., Luo Z., Dong H. et al.: Gene expression profiles deciphering leaf senescence variation between early- and late-senescence cotton lines. - PLoS ONE 8: e69847, 2013. Go to original source...
  35. Koyama T., Nii H., Mitsuda N. et al.: A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence. - Plant Physiol. 162: 991-1005, 2013. Go to original source...
  36. Kumar M., Brar A., Yadav M. et al.: Chitinases - potential candidates for enhanced plant resistance towards fungal pathogens. - Agriculture 8: 88, 2018. Go to original source...
  37. Kurepa J., Wang S., Li Y., Smalle J.: Proteasome regulation, plant growth and stress tolerance. - Plant Signal. Behav. 4: 924-927, 2009. Go to original source...
  38. Le D.T., Nishiyama R., Watanabe Y. et al.: Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels. - PLoS ONE 7: e42411, 2012. Go to original source...
  39. Lee R.H., Chen S.-C.G.: Programmed cell death during rice leaf senescence is nonapoptotic. - New Phytol. 155: 25-32, 2002. Go to original source...
  40. Lee S., Senthil-Kumar M., Kang M. et al.: The small GTPase, nucleolar GTP-binding protein 1 (NOG1), has a novel role in plant innate immunity. - Sci. Rep.-UK 7: 9260, 2017. Go to original source...
  41. Li H., Wang G., Liu S. et al.: Comparative changes in the antioxidant system in the flag leaf of early and normally senescing near-isogenic lines of wheat (Triticum aestivum L.). - Plant Cell Rep. 33: 1109-1120, 2014. Go to original source...
  42. Li Z., Tan X., Liu Z. et al.: In vitro propagation of Camellia oleifera Abel. using hypocotyl, cotyledonary node, and radicle explants. - HortScience 51: 416-421, 2016. Go to original source...
  43. Lim P.O., Kim H.J., Nam H.G.: Leaf senescence. - Annu. Rev. Plant Biol. 58: 115-136, 2007. Go to original source...
  44. Lin M., Pang C., Fan S. et al.: Global analysis of the Gossypium hirsutum L. transcriptome during leaf senescence by RNA-Seq. - BMC Plant Biol. 15: 43, 2015. Go to original source...
  45. Liu P., Zhang S., Zhou B. et al.: The histone H3K4 demethylase JMJ16 represses leaf senescence in Arabidopsis. - Plant Cell 31: 430-443, 2019. Go to original source...
  46. Liu Q., Wang Z., Xu X. et al.: Genome-wide analysis of C2H2 zinc-finger family transcription factors and their responses to abiotic stresses in poplar (Populus trichocarpa). - PLoS ONE 10: e0134753, 2015. Go to original source...
  47. Liu X., Fu Z.-X., Kang Z.-W. et al.: Identification and characterization of antioxidant enzyme genes in parasitoid Aphelinus asychis (Hymenoptera: Aphelinidae) and expression profiling analysis under temperature stress. - Insects 13: 447, 2022. Go to original source...
  48. Lu C., Lu Q., Zhang J., Kuang T.: Characterization of photosynthetic pigment composition, photosystem II photochemistry and thermal energy dissipation during leaf senescence of wheat plants grown in the field. - J. Exp. Bot. 52: 1805-1810, 2001. Go to original source...
  49. Mase K., Ishihama N., Mori H. et al.: Ethylene-responsive AP2/ERF transcription factor MACD1 participates in phytotoxin-triggered programmed cell death. - Mol. Plant Microbe Interact. 26: 868-879, 2013. Go to original source...
  50. Mátai A., Hideg É.: A comparison of colorimetric assays detecting hydrogen peroxide in leaf extracts. - Anal. Methods 9: 2357-2360, 2017. Go to original source...
  51. Mishra S.K., Tripp J., Winkelhaus S. et al.: In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. - Gene. Dev. 16: 1555-1567, 2002. Go to original source...
  52. Ordiz M.I., Barbas C.F., Beachy R.N.: Regulation of transgene expression in plants with polydactyl zinc finger transcription factors. - PNAS 99: 13290-13295, 2002. Go to original source...
  53. Pandey S.P., Somssich I.E.: The role of WRKY transcription factors in plant immunity. - Plant Physiol. 150: 1648-1655, 2009. Go to original source...
  54. Park S.-Y., Yu J.-W., Park J.-S. et al.: The senescence-induced staygreen protein regulates chlorophyll degradation. - Plant Cell 19: 1649-1664, 2007. Go to original source...
  55. Ren H., Gray W.M.: SAUR proteins as effectors of hormonal and environmental signals in plant growth. - Mol. Plant 8: 1153-1164, 2015. Go to original source...
  56. Riov J., Dagan E., Goren R., Yang S.F.: Characterization of abscisic acid-induced ethylene production in citrus leaf and tomato fruit tissues. - Plant Physiol. 92: 48-53, 1990. Go to original source...
  57. Saha G., Park J.-I., Jung H.-J. et al.: Genome-wide identification and characterization of MADS-box family genes related to organ development and stress resistance in Brassica rapa. - BMC Genomics 16: 178, 2015. Go to original source...
  58. Shukla P.S., Agarwal P., Gupta K., Agarwal P.K.: Molecular characterization of an MYB transcription factor from a succulent halophyte involved in stress tolerance. - AoB Plants 7: plv054, 2015. Go to original source...
  59. Singh K., Foley R.C., Oñate-Sánchez L.: Transcription factors in plant defense and stress responses. - Curr. Opin. Plant Biol. 5: 430-436, 2002. Go to original source...
  60. Sun Y., Oberley L.W., Li Y.: A simple method for clinical assay of superoxide dismutase. - Clin. Chem. 34: 497-500, 1988. Go to original source...
  61. Takenaka Y., Nakano S., Tamoi M. et al.: Chitinase gene expression in response to environmental stresses in Arabidopsis thaliana: chitinase inhibitor allosamidin enhances stress tolerance. - Biosci. Biotech. Bioch. 73: 1066-1071, 2009. Go to original source...
  62. Thomas H.: Senescence, ageing and death of the whole plant. - New Phytol. 197: 696-711, 2013. Go to original source...
  63. Turfan N., Ayan S., Yer Çelik E. et al.: Age-related changes of some chemical components in the leaves of sweet chestnut (Castanea sativa Mill.). - BioResources 15: 4337-4352, 2020. Go to original source...
  64. Umezawa T., Okamoto M., Kushiro T. et al.: CYP707A3, a major ABA 8ꞌ-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. - Plant J. 46: 171-182, 2006. Go to original source...
  65. Vannini C., Campa M., Iriti M. et al.: Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4 gene. - Plant Sci. 173: 231-239, 2007. Go to original source...
  66. Wan Y., Mao M., Wan D. et al.: Identification of the WRKY gene family and functional analysis of two genes in Caragana intermedia. - BMC Plant Biol. 18: 31, 2018. Go to original source...
  67. Wang B., Chen J., Chen L. et al.: Combined drought and heat stress in Camellia oleifera cultivars: leaf characteristics, soluble sugar and protein contents, and Rubisco gene expression. - Trees 29: 1483-1492, 2015. Go to original source...
  68. Wang F., Liu J., Zhou L. et al.: Senescence-specific change in ROS scavenging enzyme activities and regulation of various SOD isozymes to ROS levels in psf mutant rice leaves. - Plant Physiol. Biochem. 109: 248-261, 2016. Go to original source...
  69. Wang L., Cui J., Jin B. et al.: Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. - PNAS 117: 2201-2210, 2020. Go to original source...
  70. Watanabe M., Balazadeh S., Tohge T. et al.: Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. - Plant Physiol. 162: 1290-1310, 2013. Go to original source...
  71. Wei X., Chen J., Zhang C., Pan D.: Differential gene expression in Rhododendron fortunei roots colonized by an ericoid mycorrhizal fungus and increased nitrogen absorption and plant growth. - Front. Plant Sci. 7: 1594, 2016. Go to original source...
  72. Wingler A., von Schaewen A., Leegood R.C. et al.: Regulation of leaf senescence by cytokinin, sugars, and light: effects on NADH-dependent hydroxypyruvate reductase. - Plant Physiol. 116: 329-335, 1998. Go to original source...
  73. Wu A., Allu A.D., Garapati P. et al.: JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. - Plant Cell 24: 482-506, 2012. Go to original source...
  74. Wu L., Li J., Li Z. et al.: Transcriptomic analyses of Camellia oleifera 'Huaxin' leaf reveal candidate genes related to long-term cold stress. - Int. J. Mol. Sci. 21: 846, 2020. Go to original source...
  75. Xu Y., Gianfagna T., Huang B.: Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species. - J. Exp. Bot. 61: 3273-3289, 2010. Go to original source...
  76. Yan J., Zhang S., Tong M. et al.: Physiological and genetic analysis of leaves from the resprouters of an old Ginkgo biloba tree. - Forests 12: 1255, 2021. Go to original source...
  77. Yang S.-D., Seo P.J., Yoon H.-K., Park C.-M.: The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. - Plant Cell 23: 2155-2168, 2011. Go to original source...
  78. Ye Y., Ding Y., Jiang Q. et al.: The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. - Plant Cell Rep. 36: 235-242, 2017. Go to original source...
  79. Yin W., Hu Z., Hu J. et al.: Tomato (Solanum lycopersicum) MADS-box transcription factor SlMBP8 regulates drought, salt tolerance and stress-related genes. - Plant Growth Regul. 83: 55-68, 2017. Go to original source...
  80. Zang D., Li H., Xu H. et al.: An Arabidopsis zinc finger protein increases abiotic stress tolerance by regulating sodium and potassium homeostasis, reactive oxygen species scavenging and osmotic potential. - Front. Plant Sci. 7: 1272, 2016. Go to original source...
  81. Zhang H., Zhou C.: Signal transduction in leaf senescence. - Plant Mol. Biol. 82: 539-545, 2013. Go to original source...
  82. Zhang Y., Liang C., Xu Y. et al.: Effects of ipt gene expression on leaf senescence induced by nitrogen or phosphorus deficiency in creeping bentgrass. - J. Am. Soc. Hortic. Sci. 135: 108-115, 2010. Go to original source...
  83. Zhang Y., Luo M., Cheng L. et al.: Identification of the cytosolic glucose-6-phosphate dehydrogenase gene from strawberry involved in cold stress response. - Int. J. Mol. Sci. 21: 7322, 2020. Go to original source...
  84. Zhou Q., Jiang Z., Zhang X. et al.: Leaf anatomy and ultrastructure in senescing ancient tree, Platycladus orientalis L. (Cupressaceae). - PeerJ 7: e6766, 2019. Go to original source...
  85. Zhu M., Meng X., Cai J. et al.: Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. - BMC Plant Biol. 18: 83, 2018. Go to original source...
  86. Zieslin N., Ben-Zaken R.: Effects of applied auxin, gibberellin and cytokinin on the activity of peroxidases in the peduncles of rose flowers. - Plant Growth Regul. 11: 53-57, 1992. Go to original source...