Photosynthetica 2024, 62(3):318-325 | DOI: 10.32615/ps.2024.034
Vapor-pressure-deficit-controlled temperature response of photosynthesis in tropical trees
- 1 Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panama
- 2 Department of Agronomy, Michael Okpara University of Agriculture Umudike, Abia State 440109, Nigeria
Rising temperatures can affect stomatal and nonstomatal control over photosynthesis, through stomatal closure in response to increasing vapor pressure deficit (VPD), and biochemical limitations, respectively. To explore the independent effects of temperature and VPD, we conducted leaf-level temperature-response measurements while controlling VPD on three tropical tree species. Photosynthesis and stomatal conductance consistently decreased with increasing VPD, whereas photosynthesis typically responded weakly to changes in temperature when a stable VPD was maintained during measurements, resulting in wide parabolic temperature-response curves. We have shown that the negative effect of temperature on photosynthesis in tropical forests across ecologically important temperature ranges does not stem from direct warming effects on biochemical processes but from the indirect effect of warming, through changes in VPD. Understanding the acclimation potential of tropical trees to elevated VPD will be critical to anticipate the consequences of global warming for tropical forests.
Additional key words: climate change; photosynthesis; stomatal conductance; temperature response; tropical forest; vapor pressure deficit.
Received: May 30, 2024; Revised: May 30, 2024; Accepted: September 6, 2024; Prepublished online: October 10, 2024; Published: October 14, 2024 Show citation
Supplementary files
| Download file | Eze_3119_supplement.pdf File size: 935.37 kB |
References
- Alonso-Blanco C., Aarts M.G.M., Bentsink L. et al.: What has natural variation taught us about plant development, physiology, and adaptation? - Plant Cell 21: 1877-1896, 2009.
Go to original source... - Araújo M., Ferreira de Oliveira J.M.P., Santos C. et al.: Responses of olive plants exposed to different irrigation treatments in combination with heat shock: physiological and molecular mechanisms during exposure and recovery. - Planta 249: 1583-1598, 2019.
Go to original source... - Arnold A.E., Engelbrecht B.M.J.: Fungal endophytes nearly double minimum leaf conductance in seedlings of a neotropical tree species. - J. Trop. Ecol. 23: 369-372, 2007.
Go to original source... - Barkhordarian A., Saatchi S.S., Behrangi A. et al.: A recent systematic increase in vapor pressure deficit over tropical South America. - Sci. Rep.-UK 9: 15331, 2019.
Go to original source... - Beer C., Reichstein M., Tomelleri E. et al.: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. - Science 329: 834-838, 2010.
Go to original source... - Berry J., Björkman O.: Photosynthetic response and adaptation to temperature in higher plants. - Annu. Rev. Plant Physiol. 31: 491-543, 1980.
Go to original source... - Breshears D.D., Adams H.D., Eamus D. et al.: The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. - Front. Plant Sci. 4: 266, 2013.
Go to original source... - Buckley T.N.: How do stomata respond to water status? - New Phytol. 224: 21-36, 2019.
Go to original source... - Bueno A., Alfarhan A., Arand K. et al.: Effects of temperature on the cuticular transpiration barrier of two desert plants with water-spender and water-saver strategies. - J. Exp. Bot. 70: 1613-1625, 2019.
Go to original source... - Bueno A., Sancho-Knapik D., Gil-Pelegrín E. et al.: Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: does the environment matter? - Tree Physiol. 40: 827-840, 2020.
Go to original source... - Clark D.A., Clark D.B., Oberbauer S.F.: Field-quantified responses of tropical rainforest aboveground productivity to increasing CO2 and climatic stress, 1997-2009. - J. Geophys. Res.: Biogeo. 118: 783-794, 2013.
Go to original source... - Clark D.A., Piper S.C., Keeling C.D., Clark D.B.: Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984-2000. - PNAS 100: 5852-5857, 2003.
Go to original source... - Clark D.B., Clark D.A., Oberbauer S.F.: Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. - Glob. Change Biol. 16: 747-759, 2010.
Go to original source... - Corlett R.T.: Impacts of warming on tropical lowland rainforests. - Trends Ecol. Evol. 26: 606-613, 2011.
Go to original source... - Crous K.Y., Uddling J., De Kauwe M.G.: Temperature responses of photosynthesis and respiration in evergreen trees from boreal to tropical latitudes. - New Phytol. 234: 353-374, 2022.
Go to original source... - Dusenge M.E., Wittemann M., Mujawamariya M. et al.: Limited thermal acclimation of photosynthesis in tropical montane tree species. - Glob. Change Biol. 27: 4860-4878, 2021.
Go to original source... - Duursma R.A.: Plantecophys - an R package for analysing and modelling leaf gas exchange data. - PLoS ONE 10: e0143346, 2015.
Go to original source... - Duursma R.A., Blackman C.J., Lopez R. et al.: On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. - New Phytol. 221: 693-705, 2019.
Go to original source... - Eamus D., Boulain N., Cleverly J., Breshears D.D.: Global change-type drought-induced tree mortality: vapor pressure deficit is more important than temperature per se in causing decline in tree health. - Ecol. Evol. 3: 2711-2729, 2013.
Go to original source... - Eamus D., Taylor D.T., Macinnis-Ng C.M.O. et al.: Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations. - Plant Cell Environ. 31: 269-277, 2008.
Go to original source... - Fauset S., Freitas H.C., Galbraith D.R. et al.: Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. - Plant Cell Environ. 41: 1618-1631, 2018.
Go to original source... - Fredeen A.L., Sage R.F.: Temperature and humidity effects on branchlet gas exchange in white spruce: an explanation for the increase in transpiration with branchlet temperature. - Trees-Struct. Funct. 14: 161-168, 1999.
Go to original source... - Gharun M., Hörtnagl L., Paul-Limoges E. et al.: Physiological response of Swiss ecosystems to 2018 drought across plant types and elevation. - Philos. T. Roy. Soc. B 375: 20190521, 2020.
Go to original source... - Gora E.M., Esquivel-Muelbert A.: Implications of size-dependent tree mortality for tropical forest carbon dynamics. - Nat. Plants 7: 384-391, 2021.
Go to original source... - Grassi G., Magnani F.: Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. - Plant Cell Environ. 28: 834-849, 2005.
Go to original source... - Grossiord C., Buckley T.N., Cernusak L.A. et al.: Plant responses to rising vapor pressure deficit. - New Phytol. 226: 1550-1566, 2020.
Go to original source... - Gunderson C.A., O'Hara K.H., Campion C.M. et al.: Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. - Glob. Change Biol. 16: 2272-2286, 2010.
Go to original source... - Hammond W.M., Williams A.P., Abatzoglou J.T. et al.: Global field observations of tree die-off reveal hotter-drought fingerprint for Earth's forests. - Nat. Commun. 13: 1761, 2022.
Go to original source... - Hikosaka K., Ishikawa K., Borjigidai A. et al.: Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. - J. Exp. Bot. 57: 291-302, 2006.
Go to original source... - Huang M., Piao S., Ciais P. et al.: Air temperature optima of vegetation productivity across global biomes. - Nat. Ecol. Evol. 3: 772-779, 2019.
Go to original source... - Kumarathunge D.P., Drake J.E., Tjoelker M.G. et al.: The temperature optima for tree seedling photosynthesis and growth depend on water inputs. - Glob. Change Biol. 26: 2544-2560, 2020.
Go to original source... - Kumarathunge D.P., Medlyn B.E., Drake J.E. et al.: Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. - New Phytol. 222: 768-784, 2019.
Go to original source... - Leverett A., Kromdijk J.: The long and tortuous path towards improving photosynthesis by engineering elevated mesophyll conductance. - Plant Cell Environ. 47: 3411-3427, 2024.
Go to original source... - Malhi Y., Roberts J.T., Betts R.A. et al.: Climate change, deforestation, and the fate of the Amazon. - Science 319: 169-172, 2008.
Go to original source... - Marchin R.M., Broadhead A.A., Bostic L.E. et al.: Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming. - Plant Cell Environ. 39: 2221-2234, 2016.
Go to original source... - Medlyn B.E., Duursma R.A., Eamus D. et al.: Reconciling the optimal and empirical approaches to modelling stomatal conductance. - Glob. Change Biol. 17: 2134-2144, 2011.
Go to original source... - Middleby K.B., Cheesman A.W., Cernusak L.A.: Impacts of elevated temperature and vapour pressure deficit on leaf gas exchange and plant growth across six tropical rainforest tree species. - New Phytol. 243: 648-661, 2024.
Go to original source... - Mills C., Bartlett M.K., Buckley T.N.: The poorly-explored stomatal response to temperature at constant evaporative demand. - Plant Cell Environ. 47: 3428-3446, 2024.
Go to original source... - Mott K.A., Peak D.: Stomatal responses to humidity and temperature in darkness. - Plant Cell Environ. 33: 1084-1090, 2010.
Go to original source... - Niinemets Ü., Díaz-Espejo A., Flexas J. et al.: Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. - J. Exp. Bot. 60: 2271-2282, 2009.
Go to original source... - Padfield D., Matheson G.: Package 'nls.multstart'. Robust non-linear regression using AIC scores, 2018. Available at: https://cran.r-project.org/package=nls.multstart.
Go to original source... - Paton S.: Yearly Reports_Parque Natural Metropolitano Crane. Smithsonian Tropical Research Institute, Dataset, 2020.
- Pau S., Detto M., Kim Y., Still C.J.: Tropical forest temperature thresholds for gross primary productivity. - Ecosphere 9: e02311, 2018.
Go to original source... - Peguero-Pina J.J., Aranda I., Cano F.J. et al.: The role of mesophyll conductance in oak photosynthesis: among- and within-species variability. - In: Gil-Pelegrín E., Peguero-Pina J., Sancho-Knapik D. (ed.): Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Tree Physiology. Vol. 7. Pp. 303-325. Springer, Cham 2017.
Go to original source... - Peters R.L., Kaewmano A., Fu P.-L: et al.: High vapour pressure deficit enhances turgor limitation of stem growth in an Asian tropical rainforest tree. - Plant Cell Environ. 46: 2747-2762, 2023.
Go to original source... - R Development Core Team: R: A language and environment for statistical computing. Version 4.1.2. R Foundation for Statistical Computing, Vienna 2021. Available at: https://www.r-project.org/.
- Rey-Sánchez A.C., Slot M., Posada J.M., Kitajima K.: Spatial and seasonal variation in leaf temperature within the canopy of a tropical forest. - Clim. Res. 71: 75-89, 2016.
Go to original source... - Riederer M.: Thermodynamics of the water permeability of plant cuticles: characterization of the polar pathway. - J. Exp. Bot. 57: 2937-2942, 2006.
Go to original source... - Rowland L., Harper A., Christoffersen B.O. et al.: Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses. - Geosci. Model Dev. 8: 1097-1110, 2015.
Go to original source... - Sadok W., Lopez J.R., Smith K.P.: Transpiration increases under high-temperature stress: Potential mechanisms, trade-offs and prospects for crop resilience in a warming world. - Plant Cell Environ. 44: 2102-2116, 2021.
Go to original source... - Scafaro A.P., Posch B.C., Evans J.R. et al.: Rubisco deactivation and chloroplast electron transport rates co-limit photosynthesis above optimal leaf temperature in terrestrial plants. - Nature Commun. 14: 2820, 2023.
Go to original source... - Schönbeck L.C., Schuler P., Lehmann M.M. et al.: Increasing temperature and vapour pressure deficit lead to hydraulic damages in the absence of soil drought. - Plant Cell Environ. 45: 3275-3289, 2022.
Go to original source... - Schuster A.-C., Burghardt M., Riederer M.: The ecophysiology of leaf cuticular transpiration: are cuticular water permeabilities adapted to ecological conditions? - J. Exp. Bot. 68: 5271-5279, 2017.
Go to original source... - Slot M., Nardwattanawong T., Hernández G.G. et al.: Large differences in leaf cuticle conductance and its temperature response among 24 tropical tree species from across a rainfall gradient. - New Phytol. 232: 1618-1631, 2021.
Go to original source... - Slot M., Rifai S.W., Eze C.E., Winter K.: The stomatal response to vapor pressure deficit drives the apparent temperature response of photosynthesis in tropical forests. - New Phytol., 2024.
Go to original source... - Slot M., Winter K.: The effects of rising temperature on the ecophysiology of tropical forest trees. - In: Goldstein G., Santiago L.S. (ed.): Tropical Tree Physiology. Tree Physiology. Vol. 6. Pp. 385-412. Springer, Cham 2016.
Go to original source... - Slot M., Winter K.: In situ temperature response of photosynthesis of 42 tree and liana species in the canopy of two Panamanian lowland tropical forests with contrasting rainfall regimes. - New Phytol. 214: 1103-1117, 2017a.
Go to original source... - Slot M., Winter K.: In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species. - Plant Cell Environ. 40: 3055-3068, 2017b.
Go to original source... - Slot M., Winter K.: Photosynthetic acclimation to warming in tropical forest tree seedlings. - J. Exp. Bot. 68: 2275-2284, 2017c.
Go to original source... - Smith M.N., Taylor T.C., van Haren J. et al.: Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. - Nat. Plants 6: 1225-1230, 2020.
Go to original source... - Stovall A.E.L., Shugart H., Yang X.: Tree height explains mortality risk during an intense drought. - Nat. Commun. 10: 4385, 2019.
Go to original source... - Sullivan M.J.P., Lewis S.L., Affum-Baffoe K. et al.: Long-term thermal sensitivity of Earth's tropical forests. - Science 368: 869-874, 2020.
Go to original source... - Tan Z.-H., Zeng J., Zhang Y.-J. et al.: Optimum air temperature for tropical forest photosynthesis: mechanisms involved and implications for climate warming. - Environ. Res. Lett. 12: 054022, 2017.
Go to original source... - Tomás M., Flexas J., Copolovici L. et al.: Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. - J. Exp. Bot. 64: 2269-2281, 2013.
Go to original source... - Urban J., Ingwers M., McGuire M.A., Teskey R.O.: Stomatal conductance increases with rising temperature. - Plant Signal. Behav. 12: e1356534, 2017.
Go to original source... - Vogel S.: Leaves in the lowest and highest winds: temperature, force and shape. - New Phytol. 183: 13-26, 2009.
Go to original source... - von Caemmerer S., Evans J.R.: Temperature responses of mesophyll conductance differ greatly between species. - Plant Cell Environ. 38: 629-637, 2015.
Go to original source... - Yuan W., Zheng Y., Piao S. et al.: Increased atmospheric vapor pressure deficit reduces global vegetation growth. - Sci. Adv. 5: eaax1396, 2019.
Go to original source...




