Photosynthetica 2025, 63(2):116-128 | DOI: 10.32615/ps.2025.017

Effect of strobilurin fungicide on the initial growth of common bean plants

A.C.P. ROCHA1, J.F. MIRANDA1, L.B. DAS NEVES2, M.M. MENDES1, A.S. AMORIM1, G.S. MORAIS2, J.P.R. MARTINS3, M.B. DA SILVA2, A.B.P.L. GONTIJO2, A.R. FALQUETO2
1 Center for Human and Natural Sciences, Federal University of Espírito Santo, Avenida Fernando Ferrari 514, 29075-910 Vitória, ES, Brazil
2 Department of Agrarian and Biological Sciences, Federal University of Espírito Santo, Litorâneo, 29932-540 São Mateus, ES, Brazil
3 Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland

Strobilurin fungicides, such as pyraclostrobin (PCL), can impact plant metabolism and morphophysiological parameters. This study evaluated the effects of PCL on Phaseolus vulgaris L., subjecting seeds to imbibition in different concentrations (0, 112, 450; and 1,800 mg L-1) for 10 and 30 min. After germination in a growth chamber, germination, growth, biomass, anatomical, and physiological characteristics were analyzed. The study confirmed that PCL interference was proportional to the concentration and seed imbibition time, affecting the percentage of germinated seeds in the first count, normal and abnormal seedlings, and dead seeds. There was a reduction in seedling growth and metaxylem diameter, resulting in lower biomass accumulation. However, lower concentrations (0 and 112 mg L-1) favored the effective photochemical activity of PSII. We concluded that PCL influences seedling germination, anatomy, and physiology, with reduced concentrations potentially beneficial.

Additional key words: chlorophyll a fluorescence; Phaseolus vulgaris; plant anatomy; pyraclostrobin.

Received: February 27, 2025; Revised: April 29, 2025; Accepted: May 7, 2025; Prepublished online: June 2, 2025; Published: July 10, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ROCHA, A.C.P., MIRANDA, J.F., DAS NEVES, L.B., MENDES, M.M., AMORIM, A.S., MORAIS, G.S., ... FALQUETO, A.R. (2025). Effect of strobilurin fungicide on the initial growth of common bean plants. Photosynthetica63(2), 116-128. doi: 10.32615/ps.2025.017
Download citation

References

  1. Ahmad A., Navarro-León E., Izquierdo-Ramos M.J. et al.: Analysis of RAZORMIN® as a biostimulant and its effect on the phytotoxicity mitigation caused by fungicide azoxystrobin in pepper. - Agronomy 12: 1418, 2022. Go to original source...
  2. Amaro A.C.E., Baron D., Ono E.O., Rodrigues J.D.: Physiological effects of strobilurin and carboxamides on plants: an overview. - Acta Physiol. Plant. 42: 4, 2020. Go to original source...
  3. ANVISA - Agência Nacional de Vigilância Sanitária: [Monograph of the active substance pyraclostrobin - no. 4488.] Pp. 4. ANVISA, Brasília 2024. Available at: https://www.gov.br/anvisa/pt-br/setorregulado/regularizacao/agrotoxicos/monografias/monografias-autorizadas/p/4488json-file-1/view. [In Portuguese]
  4. Bukatsch F.: [Remarks on the double staining astrablau-safranin.] -Mikrokosmos 61: 255, 1972. [In German]
  5. Clairvil E., Martins J.P.R., Braga P.C.S. et al.: Zinc and cadmium as modulating factors of the morphophysiological responses of Alternanthera tenella Colla (Amaranthaceae) under in vitro conditions. - Photosynthetica 59: 652-663, 2021. Go to original source...
  6. DataIntelo: Pyraclostrobin market report: global forecast from 2025 to 2033. DataIntelo Research Team, Pune 2024. Available at: https://dataintelo.com/report/global-pyraclostrobin-market.
  7. de Andrade J.C., Galvan D., Effting L. et al.: Multiclass pesticide residues in fruits and vegetables from Brazil: A systematic review of sample preparation until post-harvest. - Crit. Rev. Anal. Chem. 53: 1174-1196, 2023. Go to original source...
  8. Debona D., Nascimento K.J.T., Gomes J.G.O. et al.: Physiological changes promoted by a strobilurin fungicide in the rice-Bipolaris oryzae interaction. - Pestic. Biochem. Phys. 130: 8-16, 2016. Go to original source...
  9. Donley N.: The USA lags behind other agricultural nations in banning harmful pesticides. - Environ. Health 18: 44, 2019. Go to original source...
  10. Fagan E.B., Neto D.D., Vivian R. et al.: [Effect of pyraclostrobin application on the photosynthesis rate, respiration, nitrate reductase activity and productivity of soybean crop.] - Bragantia 69: 771-777, 2010. [In Portuguese] Go to original source...
  11. FAO (Food and Agriculture Organization): Pesticides use and trade - 1990-2022. FAOSTAT Analytical Briefs No. 89. Pp. 13. FAO, Rome 2024.
  12. Fu D., Wu W., Mustafa G. et al.: Molecular mechanisms of rice seed germination. - New Crops 2: 100051, 2025. Go to original source...
  13. Ghassemi-Golezani K., Lotfi R.: The impact of salicylic acid and silicon on chlorophyll a fluorescence in mung bean under salt stress. - Russ. J. Plant Physiol. 62: 611-616, 2015. Go to original source...
  14. Hatamleh A.A., Danish M., Al-Dosary M.A. et al.: Physiological and oxidative stress responses of Solanum lycopersicum (L.) (tomato) when exposed to different chemical pesticides. - RSC Adv. 12: 7237-7252, 2022. Go to original source...
  15. Hörtensteiner S., Kräutler B.: Chlorophyll breakdown in higher plants. - BBA-Bioenergetics 1807: 977-988, 2011. Go to original source...
  16. Johansen D.A.: Plant Microtechnique. Pp. 487. McGraw-Hill Book Company Inc., New York-London 1940.
  17. Joshi J., Sharma S., Guruprasad K.N.: Foliar application of pyraclostrobin fungicide enhances the growth, rhizobial-nodule formation and nitrogenase activity in soybean (var. JS-335). - Pestic. Biochem. Phys. 114: 61-66, 2014. Go to original source...
  18. Junqueira V.B., Müller A., Rodrigues A.A. et al.: Do fungicides affect the physiology, reproductive development and productivity of healthy soybean plants? - Pestic. Biochem. Phys. 172: 104754, 2021. Go to original source...
  19. Kalaji H., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  20. Kassambara A., Mundt F.: factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7, 2020. Available at: https://CRAN.R-project.org/package=factoextra.
  21. Li H., Liu Y., Xue M. et al.: Variation in phytotoxicity of rice seedlings caused by differential accumulation of azoxystrobin and pyraclostrobin in leaves. - Plant Physiol. Biochem. 215: 108947, 2024. Go to original source...
  22. Li P., Sun P., Li D. et al.: Evaluation of pyraclostrobin as an ingredient for soybean seed treatment by analyzing its accumulation-dissipation kinetics, plant-growth activation, and protection against Phytophthora sojae. - J. Agr. Food Chem. 68: 11928-11938, 2020. Go to original source...
  23. Ma M., Cen W., Li R. et al.: The molecular regulatory pathways and metabolic adaptation in the seed germination and early seedling growth of rice in response to low O2 stress. - Plants-Basel 9: 1363, 2020. Go to original source...
  24. Maldani M., Aliyat F.Z., Cappello S. et al.: Effect of glyphosate and paraquat on seed germination, amino acids, photosynthetic pigments and plant morphology of Vicia faba, Phaseolus vulgaris and Sorghum bicolor. - Environ. Sustain. 4: 723-733, 2021. Go to original source...
  25. MAPA - Ministério da Agricultura, Pecuária e Abastecimento: [Rules for Seed Analysis.] Pp. 399. Secretaria de Defesa Agropecuária, Brasília 2009. [In Portuguese]
  26. Martins J.P.R., Rodrigues L.C.A., Santos E.R. et al.: Anatomy and photosystem II activity of in vitro grown Aechmea blanchetiana as affected by 1-naphthaleneacetic acid. - Biol. Plantarum 62: 211-221, 2018. Go to original source...
  27. Martins J.P.R., Rodrigues L.C.A., Silva T.S. et al.: Sources and concentrations of silicon modulate the physiological and anatomical responses of Aechmea blanchetiana (Bromeliaceae) during in vitro culture. - Plant Cell Tiss. Org. Cult. 137: 397-410, 2019. Go to original source...
  28. Martins J.P.R., Vasconcelos L.L., Braga P.C.S. et al.: Morphophysiological responses, bioaccumulation and tolerance of Alternanthera tenella Colla (Amaranthaceae) to excess copper under in vitro conditions. - Plant Cell Tiss. Org. Cult. 143: 303-318, 2020. Go to original source...
  29. Martins J.P.R., Wawrzyniak M.K., Kalemba E.M. et al.: Differential morphophysiological and epigenetic responses during in vitro multiplication of Quercus robur depending on donor age and plant growth regulators. - Plant Cell Tiss. Org. Cult. 159: 62, 2024. Go to original source...
  30. Martins J.P.R., Wawrzyniak M.K., Ley-López J.M. et al.: 6-Benzylaminopurine and kinetin modulations during in vitro propagation of Quercus robur (L.): an assessment of anatomical, biochemical, and physiological profiling of shoots. - Plant Cell Tiss. Org. Cult. 151: 149-164, 2022. Go to original source...
  31. Meng L.L., Song J.F., Wen J. et al.: Effects of drought stress on fluorescence characteristics of photosystem II in leaves of Plectranthus scutellarioides. - Photosynthetica 54: 414-421, 2016. Go to original source...
  32. Mourad B., Baha-Eddine B., Mokhtar B.: The responses of the antioxidant defence system of a legume green bean Phaseolus vulgaris, cv. Djedida exposed to a xenobiotic hexaconazole. - Int. J. Adv. Eng. Manag. 2: 270-278, 2017. Go to original source...
  33. Nadal M., Flexas J.: Mesophyll conductance to CO2 diffusion: effects of drought and opportunities for improvement. - In: Tejero I.F.G., Zuazo V.H.D. (ed.): Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies, and Challenges for Woody Crops. Pp. 403-438. Academic Press, London 2018. Go to original source...
  34. Nason M.A., Farrar J., Bartlett D.: Strobilurin fungicides induce changes in photosynthetic gas exchange that do not improve water use efficiency of plants grown under conditions of water stress. - Pest Manag. Sci. 63: 1191-1200, 2007. Go to original source...
  35. Nath U., Puzari A., Jamir T.: Toxicological assessment of synthetic pesticides on physiology of Phaseolus vulgaris L. and Pisum sativum L. along with their correlation to health hazards: A case study in south-west Nagaland, India. - J. Saudi Soc. Agr. Sci. 23: 300-311, 2024. Go to original source...
  36. Odewale G.O., Sosan M.B., Oyekunle J.A.O., Adeleye A.O.: Assessment of systemic and carcinogenic health risks of persistent organochlorine pesticide residues in four fruit vegetables in south-western Nigeria. - Brit. Food J. 124: 1755-1774, 2022. Go to original source...
  37. Pandey G., Rathore H.: Toxicity of strobilurins fungicides: A comprehensive review. - J. Chem. Health Risks 13: 207-218, 2023.
  38. Petit A.N., Fontaine F., Vatsa P. et al.: Fungicide impacts on photosynthesis in crop plants. - Photosynth. Res. 111: 315-326, 2012. Go to original source...
  39. Pontes M.S., Graciano D.E., Antunes D.R. et al.: In vitro and in vivo impact assessment of eco-designed CuO nanoparticles on non-target aquatic photoautotrophic organisms. - J. Hazard. Mater. 396: 122484, 2020. Go to original source...
  40. Ramos A.E.R., Aucique-Perez C.E., Dallagnol L.J.: High nitrogen levels reduce the damage caused by Pyrenophora tritici-repentis by maintaining the photosynthetic performance of wheat cultivars with contrasting resistance. - Physiol. Mol. Plant P. 136: 102581, 2025. Go to original source...
  41. Scholz A., Klepsch M., Karimi Z., Jansen S.: How to quantify conduits in wood? - Front. Plant Sci. 4: 56, 2013. Go to original source...
  42. Shahid M., Ahmed B., Zaidi A., Khan M.S.: Toxicity of fungicides to Pisum sativum: a study of oxidative damage, growth suppression, cellular death and morpho-anatomical changes. - RSC Adv. 8: 38483-38498, 2018. Go to original source...
  43. Singh G., Sahota H.K.: Impact of benzimidazole and dithiocarbamate fungicides on the photosynthetic machinery, sugar content and various antioxidative enzymes in chickpea. - Plant Physiol. Biochem. 132: 166-173, 2018. Go to original source...
  44. Souza A.F.C., Martins J.P.R., Gontijo A.B.P.L., Falqueto A.R.: Selenium improves the transport dynamics and energy conservation of the photosynthetic apparatus of in vitro grown Billbergia zebrina (Bromeliaceae). - Photosynthetica 57: 931-941, 2019. Go to original source...
  45. Stirbet A., Lazár D., Kromdijk J., Govindjee: Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses? - Photosynthetica 56: 86-104, 2018. Go to original source...
  46. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  47. Tsialtas J.T., Theologidou G.S., Karaoglanidis G.S.: Effects of pyraclostrobin on leaf diseases, leaf physiology, yield and quality of durum wheat under Mediterranean conditions. - Crop Prot. 113: 48-55, 2018. Go to original source...
  48. Wei T., Simko V.: R package 'corrplot': Visualization of a correlation matrix (Version 0.92), 2021. Available at: https://github.com/taiyun/corrplot.
  49. Wilson P.J., Thompson K., Hodgson J.G.: Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. - New Phytol. 143: 155-162, 1999. Go to original source...
  50. Yu J.-W., Song M.-H., Keum Y.-S., Lee J.-H.: Metabolomic approach of azole fungicides in radish (Raphanus sativus): Perspective of functional metabolites. - J. Hazard. Mater. 448: 130937, 2023. Go to original source...
  51. Yusuf M.A., Kumar D., Rajwanshi R. et al.: Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. - BBA-Bioenergetics 1797: 1428-1438, 2010. Go to original source...
  52. Zeng H., Liu M., Wang X. et al.: Seed-soaking with melatonin for the improvement of seed germination, seedling growth, and the antioxidant defense system under flooding stress. - Agronomy 12: 1918, 2022. Go to original source...
  53. Zhang H., Xu N., Li X. et al.: Arbuscular mycorrhizal fungi (Glomus mosseae) improves growth, photosynthesis and protects photosystem II in leaves of Lolium perenne L. in cadmium contaminated soil. - Front. Plant Sci. 9: 1156, 2018. Go to original source...
  54. Zhang L., Su F., Zhang C. et al.: Changes of photosynthetic behaviors and photoprotection during cell transformation and astaxanthin accumulation in Haematococcus pluvialis grown outdoors in tubular photobioreactors. - Int. J. Mol. Sci. 18: 33, 2016. Go to original source...
  55. Zhang Y., Liang Y., Zhao X. et al.: Silicon compensates phosphorus deficit-induced growth inhibition by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. - Agronomy 9: 733, 2019. Go to original source...
  56. Zhao Q., Chen J., Kang J., Kang S.: Trade-offs between hydraulic efficiency and safety in cotton (Gossypium hirsutum L.) stems under elevated CO2 and salt stress. - Plants-Basel 14: 298, 2025. Go to original source...