Photosynthetica 2025,63(4):340-345 | DOI: 10.32615/ps.2025.036

Increase in photosynthetic carbon assimilation and gas exchange through foliar application of melatonin in green bean plants

C.A. RAMÍREZ-ESTRADA1, E.H. OCHOA-CHAPARRO1, E. NAVARRO-LEÓN2, J.C. ANCHONDO-PAÉZ1, J.J. PATIÑO-CRUZ1, C.L. FRANCO-LAGOS1, A. ALVAREZ-MONGE1, E. SÁNCHEZ1
1 Food and Development Research Center, A.C. Avenida Cuarta Sur No. 3820, Fraccionamiento Vencedores del Desierto 33089, Delicias, Chihuahua, Mexico
2 Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain

Crop productivity depends largely on photosynthetic efficiency, which is key to converting light energy into assimilates for biomass accumulation. The use of biostimulants such as melatonin (MEL) has emerged as a sustainable alternative to improve internal processes in plants and increase production. However, its effect on beans has not yet been clearly described. This study evaluated the foliar application of MEL on physiological and productive variables of Strike beans (Phaseolus vulgaris L.). The plants were grown in vermiculite/perlite substrate (2:1) for 60 d, applying MEL [0, 1, 10, and 100 µM] weekly from 15 d after sowing. All three doses increased biomass and yield; treatment with 100 µM increased biomass by 64.9%, and 1 µM increased yield by 223.7%. Photosynthetic rate and transpiration also improved, with 10 µM being the most effective dose. Finally, sucrose concentration increased by up to 81%. Therefore, the results show MEL as a potential biostimulant for Strike bean production.

Additional key words: biomass; biostimulant; carboxylation; melatonin; Phaseolus vulgaris; photosynthetic rate.

Received: September 18, 2025; Revised: November 3, 2025; Accepted: December 4, 2025; Prepublished online: December 15, 2025; Published: December 31, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
RAMÍREZ-ESTRADA, C.A., OCHOA-CHAPARRO, E.H., NAVARRO-LEÓN, E., ANCHONDO-PAÉZ, J.C., PATIÑO-CRUZ, J.J., FRANCO-LAGOS, C.L., ALVAREZ-MONGE, A., & SÁNCHEZ, E. (2025). Increase in photosynthetic carbon assimilation and gas exchange through foliar application of melatonin in green bean plants. Photosynthetica63(4), 340-345. doi: 10.32615/ps.2025.036
Download citation

References

  1. Ahmad S., Cui W., Kamran M. et al.: Exogenous application of melatonin induces tolerance to salt stress by improving the photosynthetic efficiency and antioxidant defense system of maize seedling. - J. Plant Growth Regul. 40: 1270-1283, 2021. Go to original source...
  2. Ahmad S., Wang G.Y., Muhammad I. et al.: Application of melatonin-mediated modulation of drought tolerance by regulating photosynthetic efficiency, chloroplast ultrastructure, and endogenous hormones in maize. - Chem. Biol. Technol. Agric. 9: 5, 2022. Go to original source...
  3. Arnao M.B., Hernández-Ruiz J.: Melatonin: plant growth regulator and/or biostimulator during stress? - Trends Plant Sci. 19: 789-797, 2014. Go to original source...
  4. Azizi F., Amiri H., Ismaili A.: Melatonin improves salinity stress tolerance of Phaseolus vulgaris L. cv. Pak by changing antioxidant enzymes and photosynthetic parameters. - Acta Physiol. Plant. 44: 40, 2022. Go to original source...
  5. Calvo P., Nelson L., Kloepper J.W.: Agricultural uses of plant biostimulants. - Plant Soil 383: 3-41, 2014. Go to original source...
  6. Irigoyen J.J., Einerich D.W., Sánchez-Díaz M.: Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. - Physiol. Plantarum 84: 55-60, 1992. Go to original source...
  7. Krotz L., Giazzi G.: Nitrogen, carbon and sulfur determination in paper by flash combustion. Pp. 7. Thermo Fisher Scientific, Monza 2014. Available at: http://apps.thermoscientific.com/media/cmd/hypersite-events/Pittcon-2014/posters/PN42211_PC2014.pdf.
  8. Kuppusamy A., Alagarswamy S., Karuppusami K.M. et al.: Melatonin enhances the photosynthesis and antioxidant enzyme activities of mung bean under drought and high-temperature stress conditions. - Plants-Basel 12: 2535, 2023. Go to original source...
  9. Lobo F.D.A., Barros M.P.D., Dalmagro H.J. et al.: Fitting net photosynthetic light-response curves with Microsoft Excel - a critical look at the models. - Photosynthetica 51: 445-456, 2013. Go to original source...
  10. Mathobo R., Marais D., Steyn J.M.: The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). - Agr. Water Manage. 180: 118-125, 2017. Go to original source...
  11. Muhammad I., Ullah F., Ahmad S. et al.: A meta-analysis of photosynthetic efficiency and stress mitigation by melatonin in enhancing wheat tolerance. - BMC Plant Biol. 24: 427, 2024. Go to original source...
  12. Qiao Y., Yin L., Wang B. et al.: Melatonin promotes plant growth by increasing nitrogen uptake and assimilation under nitrogen deficient condition in winter wheat. - Plant Physiol. Biochem. 139: 342-349, 2019. Go to original source...
  13. Rodríguez Mejia J.R., Woocay Prieto A., Valles Chávez A. et al.: Estimation of solar radiation in Northwest Mexico based on the Angstrom model and polynomial regression. - Ing. Energ. 43: 35-47, 2022.
  14. Salcido-Martínez A., Sánchez E., Licon-Trillo L.P. et al.: Impact of the foliar application of magnesium nanofertilizer on physiological and biochemical parameters and yield in green beans. - Not. Bot. Horti. Agrobo. 48: 2167-2181, 2020. Go to original source...
  15. Sánchez Chávez E., Soto Parra J.M., Ruiz Sáez J.M., Romero Monreal L.: [Biomass, enzymatic activity and nitrogen compounds in snap bean plants under different potassium doses.] - Agric. Téc. Méx. 32: 23-37, 2006. [In Spanish]
  16. Sharma A., Wang J., Xu D. et al.: Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. - Sci. Total Environ. 713: 136675, 2020. Go to original source...
  17. Sukumar P., Legué V., Vayssières A. et al.: Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. - Plant Cell Environ. 36: 909-919, 2013. Go to original source...
  18. WeatherSpark: Climate and Average Weather Year Round in Ciudad Delicias, 2022. Available at: https://weatherspark.com/y/3484/Average-Weather-in-Ciudad-Delicias-Mexico-Year-Round.
  19. Wu A., Hammer G.L., Doherty A. et al.: Quantifying impacts of enhancing photosynthesis on crop yield. - Nat. Plants 5: 380-388, 2019. Go to original source...
  20. Xing K., Zhao M., Niinemets Ü. et al.: Relationships between leaf carbon and macronutrients across woody species and forest ecosystems highlight how carbon is allocated to leaf structural function. - Front. Plant Sci. 12: 674932, 2021. Go to original source...
  21. Xu Z., Jiang Y., Zhou G.: Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. - Front. Plant Sci. 6: 701, 2015. Go to original source...
  22. Yamori W.: Photosynthesis and respiration. - In: Kozai T., Niu G., Takagaki M. (ed.): Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production Pp. 197-206. Academic Press, London 2020. Go to original source...
  23. Yasmeen S., Wahab A., Saleem M.H. et al.: Melatonin as a foliar application and adaptation in lentil (Lens culinaris Medik.) crops under drought stress. - Sustainability 14: 16345, 2022. Go to original source...
  24. Zhang H.-J., Zhang N., Yang R.-C. et al.: Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). - J. Pineal Res. 57: 269-279, 2014. Go to original source...
  25. Zhang M., He S., Zhan Y. et al.: Exogenous melatonin reduces the inhibitory effect of osmotic stress on photosynthesis in soybean. - PLoS ONE 14: e0226542, 2019. Go to original source...
  26. Zhong L., Lin L., Yang L. et al.: Exogenous melatonin promotes growth and sucrose metabolism of grape seedlings. - PLoS ONE 15: e0232033, 2020. Go to original source...