

REVIEW

The light-dependent and light-independent reduction of protochlorophyllide *a* to chlorophyllide *a*

B. SCHOEFS

*Laboratory of Biomembranes, University of South Bohemia,
Branišovská 31, CZ-370 05 České Budějovice, Czech Republic*

Abstract

Two different pathways for protochlorophyllide *a* (Pchlide) reduction in photosynthetic organisms have been proved: one is strictly light-dependent whereas the second is light-independent. Both pathways occur in all photosynthetic cells except in angiosperms which form chlorophyll only through the light-dependent pathway. Most cells belonging to *Eubacteria* (*i.e.*, the anoxygenic photosynthetic bacteria) synthesize bacteriochlorophyll through the light-independent pathway. This review deals with the physiological, biochemical, and molecular biological features of molecules involved in both pathways of Pchlide reduction.

Additional key words: bacteriochlorophyll; bacteriochlorophyllide; cysteine; chlorophyll; greening; lysine; methionine; valine; tyrosine.

Introduction

The transformation of Pchlide to chlorophyllide (Chlide) is a reaction occurring in each eukaryotic and prokaryotic photosynthetic cell. The reaction consists of the *trans*-reduction of the double bond between the C₁₇ and C₁₈ at the D ring of Pchlide (Fig. 1). Two different pathways have been identified: the first one is light-dependent whereas the second one is not. Both occur in all photosynthetic organisms with the exception of angiosperms which lost the capacity to synthesize Chl in the dark during

Received 21 January 1999, accepted 22 April 1999.

Fax: + 420 38 777 55 47; e-mail: schoefs@jcu.cz.

Abbreviations: Bchl: bacteriochlorophyll; Bchlide: bacteriochlorophyllide; C: cysteine; Chl: chlorophyll *a*; Chlide: chlorophyllide *a*; K: lysine; M: methionine; Pchl: protochlorophyll *a*; Pchlide: protochlorophyllide *a*; V: valine; Y: tyrosine

Acknowledgement: This work was supported by a grant from the ministry of Youth, Education, and Physical Training of the Czech Republic (Grant n° VS96085) and by post-doctoral grant from the Grant Agency of the Czech Republic (Grant n° 20/98/P120).

evolution*. The most ancient group of photosynthetic organisms, *i.e.*, the anoxygenic bacteria, usually produce Bchl along the light-independent pathway (reviewed by Suzuki *et al.* 1997). Nonangiosperms failing to accumulate Chl in the dark are *Ginkgo biloba*, *Gnetum ulna*, *Welwitschia mirabilis*, or *Euglena gracilis* (see Armstrong 1998 and references therein). Independent of the reduction pathway producing Chlide from Pchlide, all photosynthesizing organisms synthesize Pchlide from 5-aminolevulinic acid through the Beale pathway (reviewed by Schoefs and Bertrand 1997).

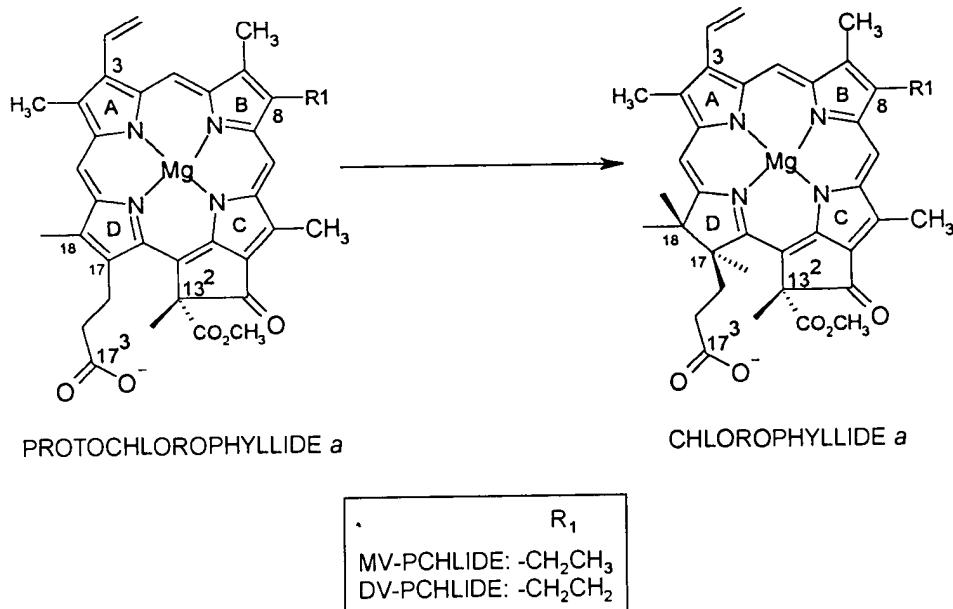


Fig. 1. Scheme of the reduction of protochlorophyllide to chlorophyllide. To unify the discussion, we use the IUPAC numbering system for chlorophyll carbon skeleton.

The light-dependent Pchlide reduction

The light-dependent reaction is studied more in higher plants than in the other branches of the plant kingdom probably because the light-independent pathway is absent in these organisms which greatly facilitates the investigations.

*According to experimental reports, irradiated angiosperms replaced in the dark, after an irradiation, are in certain conditions able to increase their Chl content (reviewed by Adamson *et al.* 1997). This Chl accumulation occurs despite the fact that all the angiosperms examined so far lack the genes involved in the light-independent Pchlide reduction (see Table 1 in Armstrong 1998).

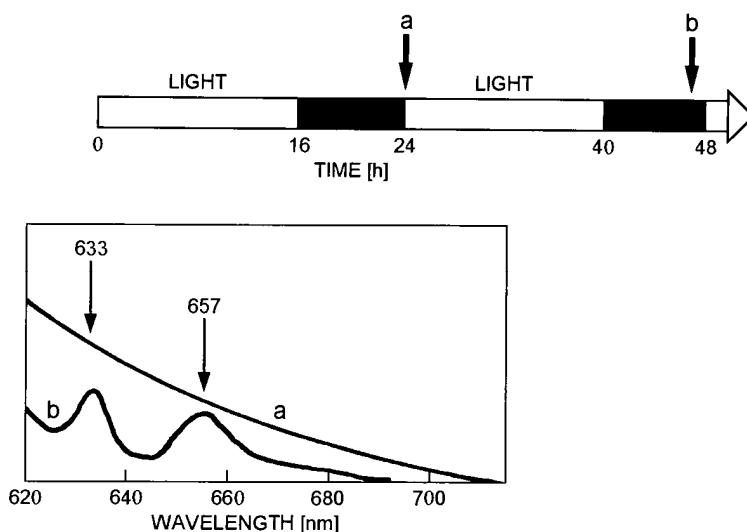


Fig. 2. 77 K fluorescence spectra of leaves recorded during the two first days of growth of bean seedlings under an irradiation regime of 16 h light and 8 h of darkness (dark bar). The positions of the emission maxima are slightly shifted to the longer wavelengths due to the baseline distortion.

In nature, plants germinate on the ground or near its surface and proplastids differentiate directly to chloroplasts (Whatley 1977). Tetrapyrrole biosynthesis starts very quickly after the imbibition. Using radiolabelled precursors, it was shown that the first Pchlido molecules are synthesized 12 h after the imbibition of cucumber cotyledons (Rebeiz *et al.* 1970). Pchlido was detected by 77 K fluorescence during the second light-dark cycle of greening in bean leaves (Fig. 2) and during the third one in bean cotyledons (Schoefs *et al.* 1994). A similar observation was reported with pea (He *et al.* 1994). However, *in situ* spectroscopic investigations, especially *in vivo* absorbance measurements, at these early developmental stages are difficult since the leaves are very small (Schoefs *et al.* 1992) and contain only traces of pigments. It is thus more convenient to use etiolated material from plants grown in complete darkness for a long period (1-2 weeks) which have accumulated larger amounts of Pchlido and NADPH:Pchlido oxidoreductase (POR) than younger leaves (Klein and Schiff 1972, Lancer *et al.* 1976, Savchenko *et al.* 1990, He *et al.* 1994, Schoefs *et al.* 1998).

Plant species have been classified in different groups on the basis of the chemical form of Pchlido (either monovinyl or divinyl) accumulated during the night and the chemical form of Chlido produced at the daybreak and later (El Mageed *et al.* 1997). The mechanism of Pchlido reduction is independent of the group to which a plant belongs (see below) and the transformation of 8-ethyl to 8-vinyl at the Pchlido ring B by a 8-vinyl Pchlido α reductase does not influence the spectral properties of the different Pchlido forms in the red spectral region (600-800 nm).

Chl formation in a model similar to that occurring in natural conditions: Spectroscopic analysis of Pchlide spectral forms of young nonirradiated leaves (e.g., 2-d-old bean leaves) showed that they contain both photoactive and nonphotoactive Pchlide forms. Their ratio is in favour of the nonphotoactive form (Klein and Schiff 1972, Böddi *et al.* 1992, Schoefs *et al.* 1992, 1994, Schoefs and Franck 1993, Böddi and Franck 1997). Photoactive Pchlide is a multimeric aggregate of ternary complexes containing Pchlide, NADPH, and a photoenzyme, the POR (EC 1.6.99.1 or EC 1.3.1.33; for review see Ryberg *et al.* 1992). The pigments are organized in such a way that energy migration between them occurs (Kahn *et al.* 1970). Reconstitution experiments suggest that POR activity involves the formation of POR-dimers (Martin *et al.* 1997) which could correspond to the photoactive Pchlide $P_{638-645}^*$ observed *in vivo*. Aggregation of these dimers would form another spectral form of photoactive Pchlide observed *in vivo*, *i.e.*, $P_{650-657}$. These two forms of photoactive Pchlide could be in equilibrium (Schoefs and Franck 1997) as proposed initially by Kahn and Nielsen (1974). Since a separate analysis of behaviour of the two photoactive Pchlides is very difficult, they have been considered in this paper as a single entity denoted $P_{638,650-657}$.

Nonphotoactive Pchlide will be denoted as $P_{628-633}$. The biochemical state of nonphotoinactive Pchlide is less clear since it is spectrally and chemically heterogeneous (Bovey *et al.* 1974, Böddi *et al.* 1992, Schoefs *et al.* 1995, Böddi and Franck 1997). Among them, two different nonphotoactive Pchlide forms have been more characterized at the biochemical level: (1) free Pchlide, and (2) a complex similar to the photoactive Pchlide but with $NADP^+$ instead of NADPH ($P_{642-649}$, El Hamouri and Sironval 1979).

When a young dark-grown leaf (e.g., 2-d-old) is irradiated by a short and saturating flash, $P_{638,650-657}$ is transformed to the Chlide absorbing at 678 nm and emitting fluorescence at 688 nm ($C_{678-688}$). $C_{678-688}$ is an aggregate similar to $P_{638,650-657}$ but containing Chlide and $NADP^+$ instead of Pchlide and NADPH (El Hamouri *et al.* 1981, Oliver and Griffiths 1982). The major part of Chlide is then liberated from the active site of the enzyme resulting in the formation of a new Chl(ide)** spectral form ($C_{670-675}$). The liberation of Chlide from the active site of the enzyme is indicated by the large simultaneous regeneration of photoactive Pchlide occurring during Chlide liberation (Schoefs and Franck 1993). In addition, energy migration measurements showed that $C_{670-675}$ was no longer in the aggregate after its formation (Schoefs and Franck 1993). If the spectroscopic properties of $C_{670-675}$ are well defined, its biochemical state remains to be determined precisely and it is not clear whether $C_{670-675}$ is released as free pigment or as a pigment-protein complex which in this case cannot be POR since it is involved in the regeneration of photoactive Pchlide. The remaining part of $C_{678-688}$ is transformed to another spectral form of Chlide ($C_{684-696}$). From the biochemical point of view, $C_{684-696}$ is similar to

* P_{X-Y} and C_{X-Y} means Pchlide and Chlide absorbing at X nm and emitting fluorescence at Y nm at 77 K.

**This term relates to either Chl and/or Chlide.

$C_{676-688}$ but contains NADPH instead of $NADP^+$ (El Hamouri *et al.* 1981, Oliver and Griffiths 1982). These events are summarized in Fig. 3A. Similar results were obtained with *Spirodela oligorrhiza*, a plant which does not develop etioplasts when cultivated in darkness (McCormac *et al.* 1996).

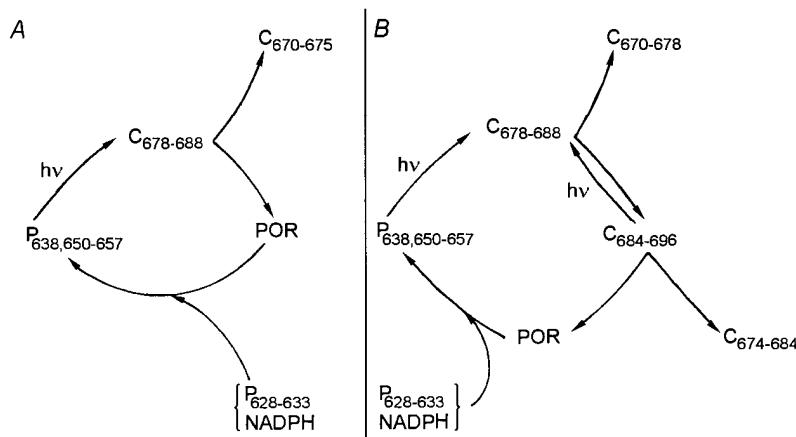


Fig. 3. The protochlorophyllide-chlorophyllide cycle in young (A) and old (B) leaves. To keep the figure clear, only the spectral forms whose role is clearly elucidated have been indicated.

Chl formation in plants cultivated for a long-time in the dark (i.e., in etiolated leaves): During dark-growth, proplastids develop to etioplasts which are characterized by the presence of a prolamellar body and some single perforated membranes called prothylakoids (Whatley 1977). Simultaneously to the development of etioplast, photoactive Pchlide is accumulated (Klein and Schiff 1972, Schoefs *et al.* 1994) into the prolamellar body within which POR is by far the most abundant protein (Selstam *et al.* 1987, Lindsten *et al.* 1988). Etiolated leaves contain the same spectral forms of Pchlide as young leaves, *i.e.*, $P_{638,650-657}$ and $P_{628-633}$ (Klein and Schiff 1972). However, in this case the photoactive to nonphotoactive Pchlide ratio is in favour of the photoactive form (Schoefs and Franck 1993, He *et al.* 1994, Schoefs *et al.* 1994).

Similarly as in young leaves, irradiation triggers photoactive Pchlide transformation to $C_{678-688}$. The absorbance and fluorescence kinetics of the Pchlide photoreduction are monoexponential when the process is studied in the time-scale of seconds. The rate constants of the kinetics are similar in young and old leaves indicating that the photoreduction mechanism is identical regardless the leaf developmental stage (Schoefs *et al.* 1994). It was proposed that the photoreduction consists of two photochemical steps (Litvin *et al.* 1976). However, the monoexponential fit (Schoefs *et al.* 1994) together with assays about the quantum requirement of the photoreduction (Griffiths *et al.* 1996) contradict this view and favour a mechanism involving a single photochemical event. The formation of $C_{678-688}$ is preceded by the formation of several short-lived nonfluorescent intermediates whose chemical structure remains undetermined (reviewed by Griffiths 1991).

In etiolated leaves, only a minor part of C₆₇₈₋₆₈₈ is transformed to C₆₇₀₋₆₇₅ (Schoefs and Franck 1993, Schoefs *et al.* 1994). The major part is transformed to C₆₈₄₋₆₉₆ which is an efficient fluorescence quencher at room temperature (Jouy and Sironval 1979). The C₆₈₄₋₆₉₆ formation which occurs readily in the dark after the initial phototransformation step, can be reverted to C₆₇₈₋₆₈₈ under irradiation (Fig. 3B), C₆₈₄₋₆₉₆ being the photoreceptor for this transformation (Franck and Inoue 1984). These reactions can be repeated and C₆₇₈₋₆₈₈ and C₆₈₄₋₆₉₆ form a cycle. *In vitro* experiments show that the C₆₇₈₋₆₈₈ to C₆₈₄₋₆₉₆ transformation requires NADPH (El Hamouri *et al.* 1981). Consequently, when the cycle is turning, NADPH is consumed. It is probably oxidized at each light-triggered C₆₈₄₋₆₉₆ → C₆₇₈₋₆₈₈ conversion (Franck and Schmid 1985). We showed recently that this cycle is involved in the photoprotection of newly formed Chlide against photooxidation (Franck *et al.* 1995, Schoefs and Franck 1995): when Chlide is in the C₆₇₈₋₆₈₈ conformation, it is readily photodestroyed while under the C₆₈₄₋₆₉₆ form it is not. Such a photoprotection mechanism is needed since carotenoids, although probably present in the photoactive Pchlide (Ouazzani Chahdi *et al.* 1998), do not exert a protective function at that state (Franck and Mathis 1980). Unprotected Chl(ide) molecules are very reactive with oxygen when irradiated and generate activated oxygen species which are able to destroy cellular and subcellular structures (reviewed by Bertrand and Schoefs 1999). The involvement of POR in this process was demonstrated as an increase of Chlide photoprotection in *Arabidopsis* overexpressing POR enzymes (Sperling *et al.* 1997).

When Chl(ide) aggregates dissociate, Chl(ide) is released from POR and is esterified during the Shibata shift (Shibata 1957, Ryberg *et al.* 1992). The final Chlide is C₆₇₄₋₆₈₄. During this shift, photoactive Pchlide regenerates (Shibata 1957). These events are summarized in Fig. 3B. Simultaneous to the different spectral shifts, the prolamellar body dissociates into vesicles which fuse together and with prothylakoids to form thylakoids (Shaw *et al.* 1985, Ryberg and Denesh 1986).

Fig. 4. Structural features of higher plant NADPH:protochlorophyllide oxidoreductase (POR) polypeptides. Representative sequences from dicotyledonous (*Arabidopsis thaliana*, pea) and monocotyledonous (barley) angiosperms and from a gymnosperm (pine) have been aligned: AtPOR A, *A. thaliana* POR A (Armstrong *et al.* 1995); AtPOR B, *A. thaliana* POR B (Benli *et al.* 1991, Armstrong *et al.* 1995); PsPOR, pea (*Pisum sativum*; Spano *et al.* 1992a); PmPOR 1, mountain pine (*Pinus mugo*; Forreiter and Apel 1993); HvPOR, barley (*Hordeum vulgare*; Schulz *et al.* 1989). POR sequences from wheat (Teakle and Griffiths 1993) and oat (Darroh *et al.* 1990) are ca. 95 % identical with the barley HvPOR, whereas a loblolly pine POR polypeptide (Spano *et al.* 1992b) is 99 % identical with the mountain pine PmPOR 1. Residue numbers for the POR polypeptides are given on the right side. Putative cleavage sites for the plastid transit peptides are indicated by a triangle. Hyphens represent gaps inserted to optimize the sequence alignments, asterisks highlight residues conserved between AtPOR A and AtPOR B, and plus signs indicate residues identical with those found in the NADPH-dependent human carbonyl reductase (Wermuth *et al.* 1988). Cysteine residues located within the mature POR polypeptides are indicated. The consensus sequence represents those residues conserved in at least four of the five higher plant POR proteins, including underlined residues that form a putative $\beta\alpha\beta$ -ADP-binding fold involved in NADPH binding. Reprinted with permission from Armstrong *et al.* (1995) (copyright by the American Society of Plant Physiologists).

The NADPH:Pchlde oxidoreductases

The POR apparent molecular mass of *ca.* 36 kDa has been estimated by SDS-polyacrylamide gel electrophoresis (Ikeuchi and Murakami 1983). It was estimated that each POR molecule can bind 2 Pchlde molecules (Apel *et al.* 1980) but recent results indicate that only one of them is bound to the active site (Wilks and Timko 1995, Rüdiger *et al.* 1998). Recently, cDNAs coding for POR have been isolated from several angiosperms and gymnosperms (reviewed by Schulz and Senger 1993). A POR homologue cDNA was also isolated from cyanobacteria (Suzuki and Bauer 1995). All POR proteins have a high degree of homology (Suzuki and Bauer 1995; Fig. 4). Evidences were presented that two very closely related genes encode POR proteins. The products of these genes, termed PORA and PORB, are present in photosynthetic cells (Armstrong *et al.* 1995, Holtorf *et al.* 1995) except in cyanobacteria (Suzuki and Bauer 1995), *Chlamydomonas reinhardtii* (Li and Timko 1996), and pea (Spano *et al.* 1992a) which contain only one POR gene. Both PORs are able to form P₆₅₀₋₆₅₇ and also induce the formation of a prolamellar body (Sperling *et al.* 1998).

In dark-grown leaves, PORA is more abundant than PORB (Holtorf and Apel 1996). Although exceptions have been found (Kuroda *et al.* 1995), the experimental results generally agree that during the first hours of irradiation, PORA and its mRNA concentration decrease (reviewed by Schulz and Senger 1993). In contrast, PORB, which is constitutively expressed, ensures Chl formation during rapid Chl accumulation (Holtorf *et al.* 1995).

The POR substrate specificity has been partially studied. 13²(R) Pchlde can only be used (Helfrich *et al.* 1996). POR can utilize either 3-vinyl,8-ethyl-Pchlde or 3,8-divinyl-Pchlde (Bertrand *et al.* 1990, reviewed by Rebeiz *et al.* 1994; Fig. 1). Usually etioplasts contain both Pchlde types whose relative abundances depend on the taxa, the developmental stage, and the environmental conditions (reviewed by Ioannides *et al.* 1994). All plants accumulate 3-vinyl,8-ethyl-Chl, except some marine prochlorophytes which contain 3,8-divinyl-Chls or both pigment Chl types in mixture (reviewed by Jeffrey and Veske 1997). To be photoreduced, the 17³-position of Pchlde should be a free carboxylic acid (Griffiths 1980, Fig. 1). POR is able to convert Zn-protopheophorbide *a* and Zn-protopheophorbide *b* to their respective Zn-pheophorbides (Bombart and Dujardin 1984, Schoch *et al.* 1995). Finally, POR is an absolutely NADPH-dependent enzyme (Griffiths 1974).

On the basis of the similarity of POR with short-chain alcohol dehydrogenase, it was proposed that the proton added to the C₁₈ is transferred from Y₂₇₅ (numbering in pea POR; Fig. 4) which might bind NADPH. K₂₇₉ would lower the pKa of the Y residue in order to facilitate deprotonation. The replacement of one of these two amino acids impairs Pchlde reduction (Wilks and Timko 1995). Comparison of the different POR (deduced) sequences indicates the conservation of two C residues, which may be involved either in Pchlde binding or in the photoreduction itself (Teakle and Griffiths 1993). Cysteine residues might be involved in Pchlde and/or NADPH binding (Oliver and Griffiths 1981). The deletion of the last 54 amino acid residues (homozygous mutant of *Synechocystis* carrying a POR interruption between M₂₆₃ and V₂₆₄; V₂₆₄ seems not to be conserved in higher plants) does not impair

Pchlide photoreduction but affects the enzyme affinity for Pchlide. Another mutant [photosystem-1-less/chlL⁻/por (del)], having all the amino acids beyond residue 111 deleted, was unable to photoreduce Pchlide (He *et al.* 1998).

To obtain more insight about the mechanism of photoreduction as well as on the organization of the complexes and the aggregates, several attempts to isolate and purify or even reconstitute photoactive complexes have been reported. Since POR is a membrane-associated protein, the use of detergent is necessary to solubilize prolamellar bodies. Thus 1% digitonin and 10 mM *Triton X-100* modified significantly the absorption properties of the aggregates (shift from 650 to 640 nm). The removal of the detergent by centrifugation restores the original absorption spectra only in the case of the *Triton X-100*-treated sample (Ikeuchi *et al.* 1984). When larger amounts of detergent are added (Birve *et al.* 1996) or when exogenous Pchlide *a* is added to an extract containing the product of the POR-gene expressed in *Escherichia coli*, only one fluorescence peak is found around 633 nm (Schulz *et al.* 1989). When such complexes are irradiated in the presence of NADPH, the formed Chlide emits fluorescence at 675 nm (Schulz *et al.* 1989).

Using a new solubilization procedure, Ouazzani Chahdi *et al.* (1998) isolated two different photoactive POR-Pchlide complexes having spectral properties very similar to P₆₃₈₋₆₄₅ and P₆₅₀₋₆₅₇. The structure of the enzyme and the binding sites of both NADPH and Pchlide remains, however, largely unknown. Solubilized PORs from wheat (with 1 mM *Genapol X-080*) have been studied by circular dichroism spectroscopy (185-250 nm) to obtain information about the enzyme secondary structure (Brive *et al.* 1996). The analysis revealed that POR is composed of around 33% α -helix, 19% β -sheet, 20% turn, and 28% random coil. These proportions are similar to that found with other oxidoreductase (see Table 1 in Birve *et al.* 1996).

The light-independent Chl synthesis

As mentioned in the Introduction, Chl can be synthesized in absence of light in most photosynthetic organisms. Using plasma membranes from *Synechococcus* sp. PCC6301, Peschek *et al.* (1989) demonstrated that the dark-Pchlide reduction was NADPH-dependent. The reaction can be reverted if NADP⁺ is added.

Three genetic loci designated *bchB*, *bchL*, and *bchN* were identified as necessary for the light-independent Pchlide reduction in *Eubacteria* (anoxygenic photosynthetic bacteria; reviewed by Suzuki *et al.* 1997). This suggests that the light-independent POR is a multimeric enzyme composed of at least three subunits. Later, similar genes were found in eukaryotic organisms synthesizing Chl in the dark (see Table 1 in Armstrong 1998). Consequently, ChlB, ChlL, and ChlN proteins are believed to compose the light-independent POR in eukaryotic organisms. None of the three polypeptides have significant similarities with that of POR (Suzuki and Bauer 1992). In contrast, the ChlL proteins presents homologies with the NifH polypeptide of nitrogenase of *Eubacteria* (Fujita *et al.* 1989) whereas ChlN has only limited similarities with the other polypeptides of eubacterial nitrogenase (*i.e.*, NifD and NifK; Fujita *et al.* 1992, 1993). Therefore, it was hypothesized that light-independent POR

is structurally similar to the oxygen-sensitive nitrogenase (Peters *et al.* 1995). BchlL has a 32 % homology with BchX (Burke *et al.* 1993a), a polypeptide of the Chlide oxidoreductase, the enzyme which reduces the C₇-C₈ double bond of ring B in the Bchl biosynthetic pathway (reviewed by Suzuki *et al.* 1997). The other polypeptides of the Chlide oxidoreductase, *i.e.*, BchY and BchZ are also similar to BchN/ChlN and BchB/ChlB, respectively (Burke *et al.* 1993a,b). This indicates that the dark-reduction of the C₁₇-C₁₈ double bond, leading to the formation of Chlide, and that of the C₇-C₈ double bond, leading to the formation of Bchl, are performed by two structurally related enzymes.

Antibodies against ChlL and ChlB react with a polypeptide of 31 kDa present in the soluble extracts of *Marchantia polymorpha* (Fujita *et al.* 1989) and with a polypeptide of 58 kDa of a membrane fraction of *Plectonema boryanum* (Liu *et al.* 1993), respectively. It was predicted from the deduced amino acid sequence of the *chlN* gene that ChlN which has no membrane spanning region has a molecular mass of 61 kDa (Choquet *et al.* 1992). Hence the information indicates that the light-independent POR is probably membrane-bound with a structural domain facing the chloroplastic stroma. This could account for the difficulties met during the isolation and purification of the light-independent POR in an active state.

Pchlide photoreduction during greening, in green plants and in plants where the light-independent Pchlide reduction also occurs: After the initial Pchlide reduction, Chl synthesis shows a lag phase whose length is dependent on the developmental stage (Sisler and Klein 1963, Akoyunoglou and Argyroudi-Akoyunoglou 1969, Henningsen and Boynton 1974, Schoefs *et al.* 1998). After this delay, Chl is rapidly accumulated (Liro 1908, Akoyunoglou and Argyroudi-Akoyunoglou 1969, Henningsen and Boynton 1974, Schoefs *et al.* 1998). If during this process, Chl formation also involves photoactive Pchlide, a steady-state amount of this photoactive complex should be detected in the light. That this is the case was shown by *in situ* fluorescence (Schoefs and Franck 1991, Franck *et al.* 1993) and by absorbance measurements (Franck and Strzalka 1992, Schoefs and Bertrand 1997). Precise measurements indicate that the amount of photoactive Pchlide observed during greening is directly related to the irradiance used for cultivation (Franck and Strzalka 1992). This photoactive Pchlide has a 77 K emission maximum slightly shifted to the blue (653 nm) which could reflect a small but significant modification(s) of the organization of the aggregates. Under a saturating irradiance, the remaining photoactive Pchlide, *i.e.*, that not photoreduced by the radiant energy used to drive greening, is transformed to C₆₇₈₋₆₈₈ which is in turn transformed to C₆₈₄₋₆₉₆ and subsequently to C₆₇₂₋₆₈₂. The duration of these shifts, similar in nature to those observed when an etiolated leaf is irradiated for the first time, is dramatically accelerated when compared with the etiolated material (Franck *et al.* 1993). In plants cultivated under a light/dark regime, the PORB concentration shows diurnal variations (Holtorf and Apel 1996) which might be correlated with variations of the Chl amount in leaves from plants cultivated in similar conditions (Sironval and Michel-Wolwertz 1963). PORA and Pchlide are reaccumulated at the end of the dark phase in plants cultivated in light/dark regime (Holtorf and Apel 1996, Schoefs *et al.* 1998). Although both PORA and PORB are able to induce prolamellar body formation

(Sperling *et al.* 1998), this reaccumulation of PORA is probably correlated with the formation of small prolamellar bodies during the dark-phase following an irradiation (Rebeiz and Rebeiz 1986). *In vitro* experiments have indicated that POR is a peripheral protein attached on the stromal side of the membranes (Dahlin *et al.* 1995).

The light-dependent Pchlide reduction in dark-grown gymnosperm cotyledons and primary needles involves similar photoactive Pchlide forms as those found in non-irradiated leaves (Michel-Wolwertz 1977, Selstam *et al.* 1987, Schoefs *et al.* 1995, Raskin and Marder 1997, Schoefs and Franck 1998). In addition, the same spectral and chemical heterogeneities of nonphotoactive Pchlide were found in pine tissues (cotyledons and primary needles) and in dark-grown higher plants (Schoefs *et al.* 1995, 1997, Schoefs and Franck 1998).

Plastids from dark-grown pine cotyledons are differentiated into grana and thylakoids and, in addition, contain prolamellar bodies. Both membranes contain POR (Selstam and Widell 1986). Two POR enzymes with different localisations have been found in those plastids (Forreiter and Apel 1993). The first one, PORA (36 kDa), is associated with the prolamellar body while another one (38 kDa) is found in the thylakoids.

In organisms where both light-dependent and light-independent pathways coexist, it seems that regulation of Chl synthesis is organism-specific. For instance, in *Plectonema boryanum*, *chlL* gene is expressed only in inhibiting nitrogen fixation (Fujita *et al.* 1991). In the green alga *Chlamydomonas moewusii* cultivated in light-dark cycles, ChlB mRNA starts to accumulate at the beginning of each dark phase (Richard *et al.* 1994). At the biochemical level, the regulation of the Pchlide pool utilisation for the dark-Chl synthesis and the formation of photoactive Pchlide in the dark has not yet been studied. It is only known that decreasing the temperature induces the preferential accumulation of photoactive Pchlide (Michel-Wolwertz 1977).

References

Adamson, H.Y., Hiller, R.G., Walmsley, J.: Protochlorophyllide reduction and greening in angiosperms: an evolutionary perspective. - *J. Photochem. Photobiol. B* **41**: 201-221, 1997.

Akoyunoglou, G., Argyroudi-Akoyunoglou, J.H.: Effects of intermittent and continuous light on the chlorophyll formation in etiolated plants at various ages. - *Physiol. Plant.* **22**: 288-295, 1969.

Apel, K., Santel, H.-J., Redlinger, T.E., Falk, H.: The protochlorophyllide holochrome of barley (*Hordeum vulgare* L.). Isolation and characterization of the NADPH-protochlorophyllide oxidoreductase. - *Eur. J. Biochem.* **111**: 251-258, 1980.

Armstrong, G.A.: Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. - *J. Photochem. Photobiol. B* **43**: 87-100, 1998.

Armstrong, G.A., Runge, S., Frick, G., Sperling, U., Apel, K.: Identification of NADPH:protochlorophyllide oxidoreductases A and B: A branched pathway for light-dependent chlorophyll biosynthesis in *Arabidopsis thaliana*. - *Plant Physiol.* **108**: 1505-1517, 1995.

Benli, M., Schulz, R., Apel, K.: Effect of light on the NADPH-protochlorophyllide oxidoreductase of *Arabidopsis thaliana*. - *Plant mol. Biol.* **16**: 615-625, 1991.

Bertrand, M., Schoefs, B.: Photosynthetic pigment metabolism in plants under stress. - In: Pessarakli, M. (ed.): *Handbook of Plant and Crop Stress*. Pp 527-543. Marcel Dekker, New York 1999.

Bertrand, M., Seyfried, B., Senger, H.: *In vitro* photoreduction of monovinyl- and divinyl- protochlorophyllide. - *Physiol. Plant.* **79**: A65, 1990.

Birve, S.J., Selstam, E., Johansson, L.B.: Secondary structure of NADPH:protochlorophyllide oxidoreductase examined by circular dichroism and prediction methods. - *Biochem. J.* **317**: 549-555, 1996.

Böddi, B., Franck, F.: Room temperature fluorescence spectra of protochlorophyllide and chlorophyllide forms in etiolated bean leaves. - *J. Photochem. Photobiol. B* **41**: 73-82, 1997.

Böddi, B., Ryberg, M., Sundqvist, C.: Identification of four universal protochlorophyllide forms in dark grown leaves by analyses of the 77 K fluorescence emission spectra. - *J. Photochem. Photobiol. B* **12**: 389-401, 1992.

Bombart, P., Dujardin, E.: The photoreduction of zinc protochlorophyllide by isolated etioplast lamellae. - In: Sironval, C., Brouers, M. (ed.): *Protochlorophyllide Reduction and Greening*. Pp. 175-189. M. Nijhoff/Dr W. Junk Publishers, The Hague - Boston - Lancaster 1984.

Bovey, F., Ogawa, T., Shibata, K.: Photoconvertible and non-photoconvertible form of protochlorophyll(ide) in etiolated bean leaves. - *Plant Cell Physiol.* **15**: 1133-1137, 1974.

Burke, D.H., Alberti, M., Hearst, J.E.: The *Rhodobacter capsulatus* chlorin reductase-encoding locus, *bchA*, consists of three genes, *bchX*, *bchY*, and *bchZ*. - *J. Bacteriol.* **175**: 2407-2413, 1993a.

Burke, D.H., Hearst, J.E., Sidow, A.: Early evolution of photosynthesis: Clues from nitrogenase and chlorophyll iron proteins. - *Proc. nat. Acad. Sci. USA* **90**: 7134-7138, 1993b.

Choquet, Y., Rahire, M., Girard-Bascou, J., Erickson, J., Rochaix, J.-D.: A chloroplast gene is required for the light-independent accumulation of chlorophyll in *Chlamydomonas reinhardtii*. - *EMBO J.* **11**: 1697-1704, 1992.

Dahlin, C., Sundqvist, C., Timko, M.P.: The *in vitro* assembly of the NADPH-protochlorophyllide oxidoreductase in pea chloroplasts. - *Plant mol. Biol.* **29**: 317-330, 1995.

Darroh, P.M., Kay, S.A., Teakle, G.R., Griffiths, W.T.: Cloning and sequencing of protochlorophyllide reductase. - *Biochem. J.* **265**: 789-798, 1990.

El Hamouri, B., Brouers, M., Sironval, C.: Pathway from photoactive $P_{633-628}$ protochlorophyllide to the $P_{696-682}$ chlorophyllide in cucumber etioplast suspensions. - *Plant Sci. Lett.* **21**: 375-379, 1981.

El Hamouri, B., Sironval, C.: A new non-photoreducible protochlorophyll(ide)-protein: $P-649-642$ from cucumber cotyledons. NADPH mediation of its transformation to protoreducible $P-657-650$. - *FEBS Lett.* **103**: 345-347, 1979.

El Mageed, H.A., El Sahhar, K.F., Robertson, K.R., Parham, R., Rebeiz, C.A.: The novel monovinyl and divinyl light-dark greening groups of plants and their relationship to the chlorophyll α biosynthetic heterogeneity in green plants. - *Photochem. Photobiol.* **66**: 89-96, 1997.

Forreiter, C., Apel, K.: Light-independent and light-dependent protochlorophyllide-reducing activities and two distinct NADPH-protochlorophyllide oxidoreductase polypeptides in mountain pine (*Pinus mugo*). - *Planta* **190**: 536-545, 1993.

Franck, F., Barthelemy, X., Strzałka, K.: Spectroscopic characterization of protochlorophyllide photoreduction in the greening leaf. - *Photosynthetica* **29**: 185-194, 1993.

Franck, F., Inoue, Y.: Light-driven reversible transformation of chlorophyllide $P_{696-682}$ into chlorophyllide $P_{688-678}$ in illuminated bean leaves. - *Photobiochem. Photobiophys.* **8**: 85-96, 1984.

Franck, F., Mathis, P.: A short-lived intermediate in the photoenzymatic reduction of protochlorophyll(ide) into chlorophyll(ide) at a physiological temperature. - *Photochem. Photobiol.* **32**: 799-803, 1980.

Franck, F., Schmid, G.H.: The role of NADPH in the reversible phototransformation of chlorophyllide P_{682} into chlorophyllide P_{678} in etioplasts of oat. - *Z. Naturforsch.* **40c**: 832-838, 1985.

Franck, F., Schoefs, B., Barthélémy, X., Myśliwa-Kurdziel, B., Strzałka, K., Popovic, R.: Protection of native chlorophyll(ide) forms and of photosystem II against photodamage during early stages of chloroplast differentiation. - *Acta Physiol. Plant.* **17**: 123-132, 1995.

Franck, F., Strzałka, K.: Detection of the photoactive protochlorophyllide-protein complex in the light during the greening of barley. - *FEBS Lett.* **309**: 73-77, 1992.

Fujita, Y., Matsumoto, H., Takahashi, Y., Matsubara, H.: Identification of a *nifDK*-like gene (ORF647) involved in the biosynthesis of chlorophyll in the cyanobacterium *Plectonema boryanum*. - *Plant Cell Physiol.* **34**: 305-314, 1993.

Fujita, Y., Takahashi, Y., Chuganji, Y., Matsubara, H.: The *nifH*-like (*frxC*) gene is involved in the biosynthesis of chlorophyll in the filamentous cyanobacterium *Plectonema boryanum*. - Plant Cell Physiol. **33**: 81-92, 1992.

Fujita, Y., Takahashi, Y., Kohchi, T., Ozeki, H., Ohyama, K., Matsubara, H.: Identification of a novel *nifH*-like (*frxC*) protein in chloroplasts of the liverwort *Marchantia polymorpha*. - Plant mol. Biol. **13**: 551-561, 1989.

Fujita, Y., Takahashi, Y., Shonai, F., Ogura, Y., Matsubara, H.: Cloning, nucleotide sequence and differential expression of the *nifH* and the *nifH*-like gene (*frxC*) genes from the filamentous cyanobacterium *Plectonema boryanum*. - Plant Cell Physiol. **32**: 1093-1106, 1991.

Griffiths, W.T.: Source of reducing equivalents for the *in vitro* synthesis of chlorophyll from protochlorophyll. - FEBS Lett. **46**: 301-304, 1974.

Griffiths, W.T.: Substrate-specificity studies on protochlorophyllide reduction in barley (*Hordeum vulgare*) etioplast membranes. - Biochem. J. **186**: 267-278, 1980.

Griffiths, W.T.: Protochlorophyllide photoreduction. - In: Scheer, H. (ed.): The Chlorophylls. Pp. 433-450. CRC Press, Boca Raton 1991.

Griffiths, W.T., Hugh, T., Blankenship, R.E.: The light intensity dependence of protochlorophyllide photoconversion and its significance to the catalytic mechanism of protochlorophyllide reductase. - FEBS Lett. **398**: 235-238, 1996.

He, Q., Brune, D., Nieman, R., Vermaas, W.: Chlorophyll *a* synthesis upon interruption and deletion of POR coding for the light-dependent NADPH:protochlorophyllide oxidoreductase in a photosystem-I-less/chlL⁻ strain of *Synechocystis* sp. PCC 6803. - Eur. J. Biochem. **253**: 161-172, 1998.

He, Z.-H., Li, J., Sundqvist, C., Timko, M.P.: Leaf developmental age controls expression of genes encoding enzymes of chlorophyll and heme biosynthesis in pea (*Pisum sativum* L.). - Plant Physiol. **106**: 537-546, 1994.

Helfrich, M., Schoch, S., Schäfer, W., Ryberg, M., Rüdiger, W.: Absolute configuration of protochlorophyllide *a* and substrate specificity of NADPH-protochlorophyllide oxidoreductase. - J. amer. chem. Soc. **118**: 2606-2611, 1996.

Henningsen, K.W., Boynton, J.E.: Macromolecular physiology of plastids. IX. Development of plastid membranes during greening of dark-grown barley seedlings. - J. Cell Sci. **15**: 31-55, 1974.

Holtorf, H., Apel, K.: The regulation of NADPH-protochlorophyllide oxidoreductases A and B in green barley plants kept under a diurnal light/dark cycle. - Planta **199**: 289-295, 1996.

Holtorf, H., Reinbothe, S., Reinbothe, C., Bereza, B., Apel K.: Two routes of chlorophyllide synthesis that are differentially regulated by light in barley. - Proc. nat. Acad. Sci. USA **92**: 3254-3258, 1995.

Ikeuchi, M., Inoue, Y., Murakami, S.: Characterization of two forms of Pchl_d (Pchl_d 650 and Pchl_d 640) in Pchl_d holochrome solubilized with detergents from squash etioplast membranes. - In: Sybesma, C. (ed.): Advances in Photosynthesis Research. Vol. IV. Pp. 765-768. Martinus Nijhoff/Dr W. Junk Publishers, The Hague - Boston - Lancaster 1984.

Ikeuchi, M., Murakami, S.: Separation and characterization of prolamellar bodies and prothylakoids from squash etioplasts. - Plant Cell Physiol. **24**: 71-80, 1983.

Ioannides, I.M., Fasoula, D.A., Robertson, K.R., Rebeiz, C.A.: An evolutionary study of chlorophyll biosynthetic heterogeneity in green plants. - Biochem. Syst. Ecol. **22**: 211-220, 1994.

Jeffrey, S.W., Vesk, M.: Introduction to marine phytoplankton and their pigment signatures. - In: Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W. (ed.): Phytoplankton Pigments in Oceanography. Pp. 37-84. UNESCO, Paris 1997.

Jouy, M., Sironval, C.: Quenching of the fluorescence emitted by P₆₉₅₋₆₈₂ at room temperature in etiolated illuminated leaves. - Planta **147**: 127-133, 1979.

Kahn, A., Boardman, N.K., Thorne, S.W.: Energy transfer between protochlorophyllide molecules: Evidence for multiple chromophores in the photoactive protochlorophyllide-protein complexes *in vivo* and *in vitro*. - J. mol. Biol. **48**: 85-101, 1970.

Kahn, A., Nielsen, O.F.: Photoconvertible protochlorophyll(ide)_{635/650} *in vivo*: a single species or two species in dynamic equilibrium? - Biochim. biophys. Acta **333**: 409-414, 1974.

Klein, S., Schiff, J.A.: The correlated appearance of prolamellar bodies, protochlorophyll(ide) species, and the Shibata shift during development of bean etioplasts in the dark. - *Plant Physiol.* **49**: 619-626, 1972.

Kuroda, H., Masuda, T., Ohta, H., Shioi, Y., Takamiya, K.: Light-enhanced gene expression of NADPH-protochlorophyllide oxidoreductase in cucumber. - *Biochem. biophys. Res. Commun.* **210**: 310-316, 1995.

Lancer, H.A., Cohen, C.E., Schiff, J.A.: Changing ratios of phototransformable protochlorophyll and protochlorophyllide of bean seedlings developing in the dark. - *Plant Physiol.* **57**: 369-374, 1976.

Li, J., Timko, M.P.: The *pc-1* phenotype of *Chlamydomonas reinhardtii* results from a deletion mutation in the nuclear gene for NADPH:protochlorophyllide oxidoreductase. - *Plant mol. Biol.* **30**: 15-37, 1996.

Lindsten, A., Ryberg, M., Sundqvist, C.: The polypeptide composition of highly purified prolamellar bodies and prothylakoids from wheat (*Triticum aestivum*) as revealed by silver staining. - *Physiol. Plant.* **72**: 167-176, 1988.

Liro, J.I.: Über die photochemische Chlorophyllbildung bei den Phanerogamen. - *Ann. Acad. Sci. fenn. A 1*: 1-147, 1908.

Litvin, F.F., Efimtsev, E.I., Ignatov, N.V., Belyaeva, O.B.: Evidence for the existence of two photochemical reactions in the process of chlorophyll biosynthesis and investigation of energy transfer between them. - *Soviet Plant Physiol.* **23**: 17-24, 1976.

Liu, X.-Q., Xu, H., Huang, C.: Chloroplast *chlB* gene is required for light-independent chlorophyll accumulation in *Chlamydomonas reinhardtii*. - *Plant mol. Biol.* **23**: 297-308, 1993.

Martin, G.E.M., Timko, M.P., Wilks, H.M.: Purification and kinetic analysis of pea (*Pisum sativum* L.) NADPH:protochlorophyllide oxidoreductase expressed as fusion maltose-binding protein in *Escherichia coli*. - *Biochem. J.* **325**: 139-145, 1997.

McCormac, D.J., Marwood, C.A., Bruce, D., Greenberg, B.M.: Assembly of photosystem I and II during the early phase of light-induced development of chloroplasts from proplastids in *Spirodesa oligorrhiza*. - *Photochem. Photobiol.* **63**: 837-845, 1996.

Michel-Wolwertz, M.R.: Chlorophyll formation in cotyledons of *Pinus jeffreyi* during germination in the dark. Occasional accumulation of protochlorophyll(-ide) forms. - *Plant Sci. Lett.* **8**: 125-134, 1977.

Oliver, R.P., Griffiths, W.T.: Covalent labelling of the NADPH:protochlorophyllide oxidoreductase from etioplast membranes with [³H]-N-phenylmaleimide. - *Biochem. J.* **195**: 93-101, 1981.

Oliver, R.P., Griffiths, W.T.: Pigment-protein complexes of illuminated etiolated leaves. - *Plant Physiol.* **70**: 1019-1025, 1982.

Ouazzani Chahdi, M.A., Schoefs, B., Franek, F.: Isolation and characterization of complexes of NADPH:protochlorophyllide oxidoreductase of wheat. - *Planta* **206**: 673-680, 1998.

Peschek, G.A., Hinterstoisser, B., Wastyn, M., Kuntner, O., Pineau, B., Missbichler, A., Lang, J.: Chlorophyll precursors in the plasma membrane of a cyanobacterium, *Anacystis nidulans*. Characterization of protochlorophyllide and chlorophyllide by spectrophotometry, spectrofluorimetry, solvent partition, and high performance liquid chromatography. - *J. biol. Chem.* **264**: 11827-11832, 1989.

Peters, J.W., Fischer, K., Dean, D.R.: Nitrogenase structure and function - A biochemical-genetic perspective. - *Annu. Rev. Microbiol.* **49**: 335-366, 1995.

Raskin, V.I., Marder, J.B.: Chlorophyll organization in dark-grown and light-grown pine (*Pinus brutia*) and barley (*Hordeum vulgare*). - *Physiol. Plant.* **101**: 620-626, 1997.

Rebeiz, C.A., Parham, R., Fasoula, D.A., Ioannides, I.M.: Chlorophyll *a* biosynthetic heterogeneity. - In: *The Biosynthesis of Tetrapyrrole Pigments*. Pp. 177-193. J. Wiley & Sons, Chichester - New York - Brisbane - Toronto - Singapore 1994.

Rebeiz, C.A., Yaghi, M., Abou-Haidar, M., Castelfranco, P.A.: Protochlorophyll biosynthesis in cucumber (*Cucumis sativus*, L.) cotyledons. - *Plant Physiol.* **46**: 57-63, 1970.

Rebeiz, C.C., Rebeiz, C.A.: Chloroplast biogenesis 53: Ultrastructural study of chloroplast development during photoperiodic greening. - In: Akoyunoglou, G., Senger, H. (ed.): Regulation of Chloroplast Differentiation. Pp. 389-396. Alan R. Liss, New York 1986.

Richard, M., Tremblay, C., Bellemare, G.: Chloroplastic genomes of *Ginkgo biloba* and *Chlamydomonas moewusii* contain *chlB* gene encoding one subunit of a light-independent protochlorophyllide reductase. - *Curr. Genet.* **26**: 159-165, 1994.

Rüdiger, W., Oster, V., Schoch, S., Klement, H., Helfrich, M.: The last steps of chlorophyll biosynthesis. - In: Garab, G. (ed.): Photosynthesis: Mechanisms and Effects. Vol. IV. Pp. 3203-3208. Kluwer Acad. Publ., Dordrecht - Boston - London 1998.

Ryberg, M., Artus, N., Böddi, B., Lindsten, A., Wiktorsson, B., Sundqvist, C.: Pigment-protein complexes of chlorophyll precursors. - In: Argyroudi-Akoyunoglou, J.H. (ed.): Regulation of Chloroplast Biogenesis. Pp. 217-224. Plenum Press, New York 1992.

Ryberg, M., Denesh, K.: Localization of NADPH-protochlorophyllide oxidoreductase in dark-grown wheat (*Triticum aestivum*) by immuno-electron microscopy before and after transformation of the prolamellar bodies. - *Physiol. Plant.* **66**: 616-624, 1986.

Savchenko, G.E., Abramchik, L.M., Klyuchareva, E.A., Chaika, M.T.: NADPH:protochlorophyllide oxidoreductase in barley (*Hordeum vulgare*) seedlings. - In: Baltscheffsky, M. (ed.): Current Research in Photosynthesis. Vol. III. Pp. 819-822. Kluwer Acad. Publ., Dordrecht - Boston - London 1990.

Schoch, S., Helfrich, M., Wiktorsson, B., Sundqvist, C., Rüdiger, W., Ryberg, M.: Photoreduction of zinc protopheophorbide *b* with NADPH-protochlorophyllide oxidoreductase from etiolated wheat (*Triticum aestivum* L.). - *Eur. J. Biochem.* **229**: 291-298, 1995.

Schoefs, B., Bertrand, M.: Chlorophyll biosynthesis. - In: Pessarakli, M. (ed.): Handbook of Photosynthesis. Pp. 49-71. Marcel Dekker, New York - Basel - Hong Kong 1997.

Schoefs, B., Bertrand, M., Franck, F.: Plant greening: Biogenesis of photosynthetic apparatus in bean leaves irradiated shortly after the germination. - *Photosynthetica* **27**: 497-504, 1992.

Schoefs, B., Bertrand, M., Franck, F.: Spectral heterogeneity of the photoinactive protochlorophyllide in dark-grown bean leaves and pine cotyledons. - In: Mathis, P. (ed.): Photosynthesis: from Light to Biosphere. Vol. III. Pp. 1009-1012. Kluwer Acad. Publ., Dordrecht - Boston - London 1995.

Schoefs, B., Bertrand, M., Lemoine, Y.: Changes in the photosynthetic pigments in bean leaves during the first photoperiod of greening and the subsequent dark-phase. Comparison between old (10-d-old) leaves and young (2-d-old) leaves. - *Photosynth. Res.* **57**: 203-213, 1998.

Schoefs, B., Bertrand, M., Lemoine, Y., Franck, F.: Determination of the pigment composition of dark-grown pine cotyledons by reversed-phase high-performance liquid chromatography. - *Arch. Physiol. Biochem.* **105**: 15, 1997.

Schoefs, B., Franck, F.: Photosystem II assembly in 2-day-old bean leaves during the first 16 hrs of greening. - *Compt. rend. Acad. Sci. Paris, Sér. III* **313**: 441-445, 1991.

Schoefs, B., Franck, F.: Photoreduction of protochlorophyllide to chlorophyllide in 2-d-old dark-grown bean (*Phaseolus vulgaris* cv. Commodore) leaves. Comparison with 10-d-old dark-grown (etiolated) leaves. - *J. exp. Bot.* **44**: 1053-1057, 1993.

Schoefs, B., Franck, F.: Role of NADPH:protochlorophyllide reductase in photoprotection of newly formed chlorophyllide. - In: Mathis, P. (ed.): Photosynthesis: from Light to Biosphere. Vol. III. Pp. 1013-1016. Kluwer Acad. Publ., Dordrecht - Boston - London 1995.

Schoefs, B., Franck, F.: Light-minus-dark absorbance spectra during photoactive Pchlde photoreduction. - In: Carmona, P., Navarro, R., Hernanz, A. (ed.): Spectroscopy of Biological Molecules: Modern Trends. Pp. 133-134. Kluwer Academic Publishers, Dordrecht 1997.

Schoefs, B., Franck, F.: Chlorophyll synthesis in dark-grown pine primary needles. - *Plant Physiol.* **118**: 1159-1168, 1998.

Schoefs, B., Garnir, H.P., Bertrand, M.: Comparison of the photoreduction of protochlorophyllide to chlorophyllide in leaves and cotyledons from dark-grown bean as a function of age. - *Photosynth. Res.* **41**: 405-417, 1994.

Schulz, R., Steinmüller, K., Klaas, M., Forreiter, C., Rasmussen, S., Hiller, C., Apel, K.: Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barley (*Hordeum vulgare* L.) and its expression in *Escherichia coli*. - Mol. gen. Genet. **217**: 355-361, 1989.

Schulz, R., Senger, H.: Protochlorophyllide reductase: a key enzyme in the greening process. - In: Sundqvist, C., Ryberg, M. (ed.): Pigment-Protein Complexes in Plastids: Synthesis and Assembly. Pp. 179-218. Academic Press, San Diego - New York - Boston - London - Sydney - Tokyo - Toronto 1993.

Selstam, E., Widell, A.: Characterization of prolamellar bodies, from dark-grown seedlings of Scots pine, containing light- and NADPH-dependent protochlorophyllide oxidoreductase. - Physiol. Plant. **67**: 345-352, 1986.

Selstam, E., Widell, A., Johansson, L.B.-Å: A comparison of prolamellar bodies from wheat, Scots pine and Jeffrey pine. Pigment spectra and properties of protochlorophyllide oxidoreductase. - Physiol. Plant. **70**: 209-214, 1987.

Shaw, P., Henwood, J., Oliver, R., Griffiths, T.: Immunogold localisation of protochlorophyllide oxidoreductase in barley etioplasts. - Eur. J. Cell Biol. **39**: 50-55, 1985.

Shibata, K.: Spectroscopic studies on chlorophyll formation in intact leaves. - J. Biochem. **44**: 147-173, 1957

Sironval, C., Michel-Wolwertz, M.-R.: Quelques particularités du métabolisme des chlorophylles. - In: La Photosynthèse. Pp. 317-342. Edit. CNRS, Paris 1963.

Sisler, E.C., Klein, W.H.: The effect of age and various chemical substances on the lag phase of chlorophyll synthesis in dark-grown bean seedlings. - Physiol. Plant. **16**: 315-322, 1963.

Spano, A.J., He, Z.H., Michel, H., Hunt, D.F., Timko, M.P.: Molecular cloning, nuclear gene structure and developmental expression of NADPH:protochlorophyllide oxidoreductase in pea (*Pisum sativum* L.). - Plant mol. Biol. **18**: 967-972, 1992a.

Spano, A.J., He, Z.H., Timko, M.P.: NADPH:protochlorophyllide oxidoreductase in white (*Pinus strobus*) and loblolly pine (*P. taeda*). - Mol. gen. Genet. **236**: 86-95, 1992b.

Sperling, U., Franck, F., van Cleve, B., Frick, G., Apel, K., Armstrong, G.: Etioplast differentiation in *Arabidopsis*: both PORA and PORB restore the prolamellar body and photoactive protochlorophyllide F655 to the *cop1* photomorphogenic mutant. - Plant Cell **10**: 283-296, 1998.

Sperling, U., van Cleve, B., Frick, G., Apel, K., Armstrong, G.: Overexpression of light-dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedlings survival in white light and protects against photooxidative damage. - Plant J. **12**: 649-658, 1997.

Suzuki, J.Y., Bauer, C.E.: Light-independent chlorophyll biosynthesis: Involvement of the chloroplast gene *chlL* (*frxC*). - Plant Cell **4**: 929-940, 1992.

Suzuki, J.Y., Bauer, C.E.: A prokaryotic origin for light-dependent chlorophyll biosynthesis of plants. - Proc. nat. Acad. Sci. USA **92**: 3749-3753, 1995.

Suzuki, J.Y., Bolivar, D.W., Bauer, C.E.: Genetic analysis of chlorophyll biosynthesis. - Annu. Rev. Genet. **31**: 61-89, 1997.

Teakle, G.R., Griffiths, W.T.: Cloning, characterisation and import studies on protochlorophyllide reduction from wheat (*Triticum aestivum*). - Biochem. J. **296**: 225-230, 1993.

Wermuth, B., Bohren, K.M., Heinemann, G., Wartburg, J.P. von, Gabbay, K.H.: Human carbonyl reductase: nucleotide sequence analysis of a cDNA and amino acid sequence of the encoded protein. - J. biol. Chem. **263**: 16185-16188, 1988.

Whatley, J.M.: Variations in the basic pathway of chloroplast development. - New Phytol. **78**: 407-420, 1977.

Wilks, H.M., Timko, M.P.: A light-dependent complementation system for the analysis of NADPH:protochlorophyllide oxidoreductase: identification and mutagenesis of two conserved residues that are essential for enzymatic activity. - Proc. nat. Acad. Sci. USA **92**: 724-728, 1995.