

## Diurnal and seasonal patterns of water potential, photosynthesis, evapotranspiration and water use efficiency of clusterbean

A. KUMAR\*,+, N.C. TURNER\*,\*\*, D.P. SINGH\*\*\*, P. SINGH\*\*\*, and M. BARR\*\*

CSIRO, Division of Plant Industry, Private Bag, PO Wembley, WA 6014, Australia\*

Centre for Legumes in Mediterranean Agriculture, University of Western Australia, Australia\*\*

Directorate of Research, CCS Haryana Agricultural University, Hisar, India\*\*\*

### Abstract

Diurnal patterns of leaf water potential ( $\Psi_W$ ), canopy net photosynthetic rate ( $P_N$ ), evapotranspiration rate ( $E$ ), canopy temperature ( $T_c$ ), and water use efficiency (WUE) of clusterbean [*Cyamopsis tetragonoloba* (L.) Taub., cv. Desi] were studied at six phenological stages of plant development under field conditions at CCS Haryana Agricultural University, Hisar. The highest  $P_N$ ,  $E$ , and WUE were observed at pod initiation stage (61 DAS). Daily maxima of  $P_N$  were usually between 11:00 to 14:00 h while those of  $E$  and WUE between 12:30 and 16:00 h.  $P_N$  was mainly dependent on photosynthetically active radiation and  $E$  on air temperature ( $T_a$ ) but the relationships varied at different growth stages. WUE declined with the increase in  $T_a$ . At mid-day,  $\Psi_W$  was highest during pod initiation.

*Additional key words:* air and leaf temperature; *Cyamopsis tetragonoloba*; photosynthetically active radiation; water relations.

### Introduction

During the last decade, the influence of photosynthetically active radiation and temperature on daily patterns of tissue water relations,  $P_N$ ,  $E$ , and WUE at different growth stages in wheat, maize, sorghum, pearl millet, chickpeas, and *Brassica* species have been studied in north-western India (Singh *et al.* 1985, 1986, 1987a,b,c, 1993, Kumar *et al.* 1987, 1994, 1995, 1996, 1998, Yadav *et al.* 1987, 1990, Kumar and Elston 1992, Chaudhary *et al.* 1995, Singh and Singh 1995). It is important to

---

*Received 16 November 1998, accepted 22 April 1999.*

\*Author for correspondence. Permanent address: Department of Agronomy, CCS Haryana Agricultural University, Hisar, India; e-mail: hau@hau.ren.nic.in

*Acknowledgements:* We thank the technicians, R.K. Sharma, S. Bahadur, and R. Kumar for their help in the simultaneous measurements of the physiological characters, and Karen Treble for her help in computing.

evaluate and analyse these characters for each crop species, so that the information can be used for an improved understanding and management of crop-environment interactions and ultimately for obtaining higher yields.

Clusterbean is an important summer legume in north-western India. It is grown on marginal sandy soils that have been left unseeded due to the late onset of monsoon rains. We are not aware of any reports on its water relations or gas exchange. This paper reports ontogenetic variations in these physiological characters in clusterbean grown under rainfed conditions.

## Materials and methods

A field experiment on clusterbean [*Cyamopsis tetragonoloba* (L.) Taub., cv. Desi] was conducted at CCS Haryana Agricultural University, Hisar, India ( $29^{\circ}10'N$ ,  $75^{\circ}45'E$ ). The soil was sandy loam in texture, alkaline in reaction (pH 8.1), and medium in fertility (available N,  $P_2O_5$ ,  $K_2O$  in upper 30 cm soil profile was 18, 0.75, and  $20\text{ g m}^{-2}$ ). The crop was sown on 17 July after the beginning of the monsoon rains and the soil contained 124 mm of water in the top 100 cm profile at seeding time. The average bulk density of the upper metre of the soil profile was  $1.44\text{ kg m}^{-3}$ . Per  $1\text{ m}^3$ , 20 g N + 5 g  $P_2O_5$  + 5 g  $K_2O$  was applied at seeding as urea, single superphosphate, and potassium chloride, respectively. The crop received 12 mm of rainfall 71 d after sowing (DAS) and 26 mm after 93 DAS.

Measurements of plant water relations ( $T_c$ ,  $\Psi_w$ ), canopy  $P_N$ ,  $E$ , and WUE were made between 08:30 to 18:30 h on clear days (except after 12:30 at pod initiation stage when solar radiation was below average due to cloudy conditions) during six stages of plant development: 24 DAS (appearance of ten leaves on main stem), 53 DAS (flower initiation), 61 DAS (pod initiation), 70 DAS (50 % pod formation), 86 DAS (completion of pod formation), and 96 DAS (80 % of pod filling). Canopy  $P_N$  and  $E$  were simultaneously measured in three replicate plots using a closed canopy gas exchange system. The beginning  $CO_2$  concentration was always near ambient air concentration, and the set value was about  $20\text{ g m}^{-3}$ . Portable clear polythene (0.6 mm) chambers that were  $60\times 60\times 120\text{ cm}$  during the vegetative period and  $200\times 150\times 200\text{ cm}$  at all the other occasions were used. Two fans were attached to each chamber to ensure complete mixing of  $CO_2$  and  $H_2O$  during the measurements. This helped to eliminate the effects of boundary layer resistance of leaves. The chambers were temporarily placed over the plot for less than 60 s. Air samples drawn continuously from the chamber were passed through the  $CO_2$  and water analysers and returned to the chamber. The  $CO_2$  concentration was measured with a differential analyzer (225 *Mark II*, *Analytical Development Co.*, Hoddesdon, UK) and water vapour concentration with a hygrometer (*American Instrument*, Silver Springs, USA) as described by Kumar *et al.* (1994). Photosynthetically active radiation (PAR, 400-700 nm) above the crop canopy was measured with a quantum sensor (*Lambda Instruments*, Lincoln, NE, USA), and  $T_a$  by a telethermometer (*Thomas Scientific Appliance*, Philadelphia, USA). PAR decreased by 8 % inside the chamber. After 1 min of crop coverage, the  $T_a$  did not rise more than  $1^{\circ}\text{C}$ . Therefore, outside  $T_a$  was 602

measured.  $\Psi_w$  was measured by the pressure chamber technique (Scholander *et al.* 1964), following precautions recommended by Turner (1988),  $T_c$  with an infrared thermometer (*Raynger II, Raytek, USA*) following Singh *et al.* (1985). WUE was calculated as  $P_N/E$ .

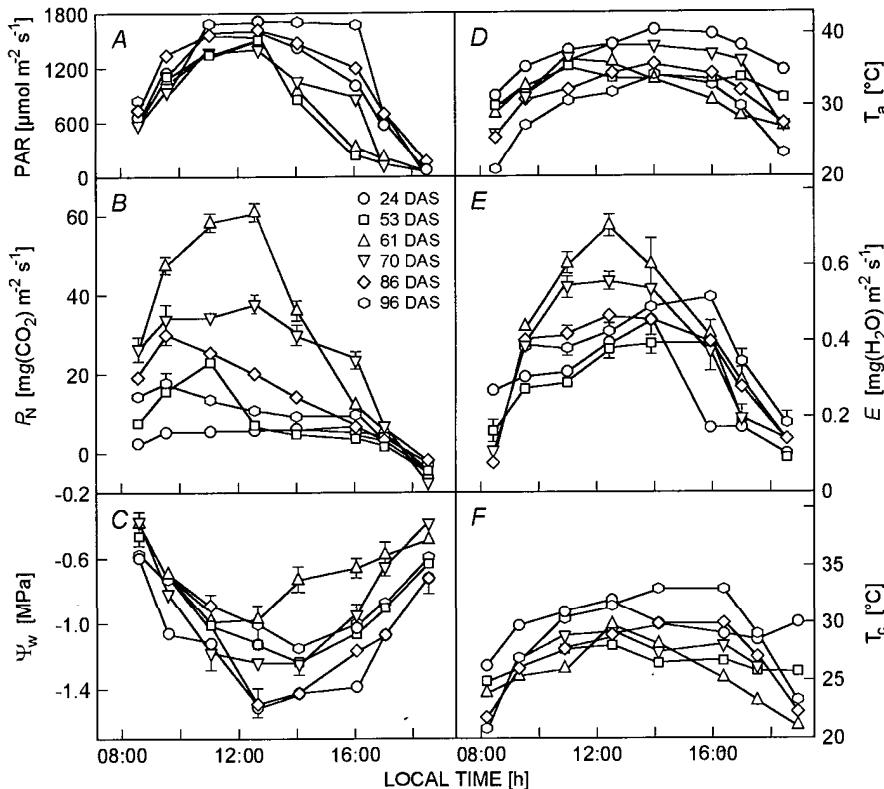



Fig. 1. Daily changes in (A) photosynthetically active radiation (PAR, 400 to 700 nm), (B) canopy photosynthesis ( $P_N$ ), (C) leaf water potential ( $\Psi_w$ ), (D) air temperature ( $T_a$ ), (E) canopy temperature ( $T_c$ ), and (F) evapotranspiration ( $E$ ) of clusterbean at six stages of plant growth. The six stages were: 24 DAS (appearance of ten leaves on main stem), 53 DAS (flower initiation), 61 DAS (pod initiation), 70 DAS (50 % pod formation), 86 DAS (completion of pod formation), and 96 DAS (80 % filling of pods). The vertical bars in the figures represent the standard deviation of the means.

For total dry matter (TDM) studies, plants were harvested from an area of 0.5 m<sup>2</sup> at each occasion from the three replications. Before drying the samples in an oven at 65 °C, leaf area was determined with a portable area meter. At harvest, seed yield was determined separately for each plot.

## Results and discussion

Leaf area index (LAI) of clusterbean reached a maximum (7.7) during pod initiation stage (61 DAS) and declined thereafter towards maturity (Table 1). LAI was low

Table 1. Leaf area index (LAI) and total dry matter (TDM) of clusterbean measured at six stages of plant growth [DAS]. Figures in parentheses are the standard deviations of mean of three replicates.

| DAS | LAI         | TDM<br>[g m <sup>-2</sup> ] |
|-----|-------------|-----------------------------|
| 24  | 2.03 (0.15) | 58.67 (4.16)                |
| 53  | 6.20 (0.56) | 331.33 (32.88)              |
| 61  | 7.70 (0.27) | 636.00 (46.13)              |
| 70  | 5.03 (0.32) | 714.67 (23.35)              |
| 86  | 1.93 (0.25) | 863.33 (11.37)              |
| 96  | 0.43 (0.15) | 881.00 (12.77)              |

during the pod formation and filling period (between 0.43 to 1.93). TDM increased at a faster rate until pod initiation (96 DAS). The increase in TDM after pod initiation did not coincide with LAI. It indicated that both pods and stem might have contributed to photosynthesis and thus to TDM after the start of leaf senescence. The seed yield was 175 g m<sup>-2</sup> (1.75 t ha<sup>-1</sup>).

$P_N$  increased from the vegetative period (24 DAS), reached a maximum during pod initiation (53 DAS), and declined thereafter (Fig. 1B), but values were higher during the other reproductive stages than at 24 DAS. Daily maxima of  $P_N$  peaks at 24, 61, and 70 DAS were observed at mid-day (12:30), at 53 DAS at 11:00 h, and at 86 and 96 DAS before 09:30 h. A sharper decline in  $P_N$  was observed during the former than the latter growth stages in the afternoon. The decrease in  $P_N$  after 12:30 h at 61 DAS might be due to decrease in solar radiation (Fig. 1A) as a result of thin cloud cover in the afternoon. Maximum  $P_N$  at 61 DAS was in agreement with maximum  $\Psi_W$  (Fig. 1C), LAI, and maximum requirements of photosynthates for pod initiation (Lush and Rawson 1979, Singh *et al.* 1993). Decline in  $P_N$  after pod initiation was perhaps due to decrease in leaf area and tissue  $\Psi_W$  coupled with higher  $T_a$  (Fig. 1D). An increase in PAR brought a linear increase in  $P_N$  but the response varied at different growth stages (Fig. 2A). The photosynthetic efficiency was highest at 61 DAS. The relationship between  $P_N$  and PAR in clusterbean was different from that of cereals, chickpeas, and *Brassica* species (Yadav *et al.* 1987, Singh *et al.* 1993, Kumar *et al.* 1994). In clusterbean,  $P_N$  peaked at 24, 61, and 70 DAS at mid-day, and at 53, 86, and 96 DAS in the morning hours, whereas in wheat and *Brassica* species it was attained at mid-day, between 12:00 to 14:00 h (Singh *et al.* 1993, Kumar *et al.* 1994).

The  $E$  followed the course of  $T_a$  but also seemed to be influenced by leaf area (Figs. 1E, 2C, Table 1). Maximum  $E$  was observed at 61 DAS followed by 70 DAS. This coincided with the peak of  $P_N$ . All other stages had more or less similar rates of  $E$ . Daily maxima of  $E$  were observed between 12:30 to 14:00 h at 61, 70, and 86 DAS, and between 14:00 and 16:00 h at stages 24, 53, and 96 DAS. Lower  $E$  observed at 24 and 53 DAS was mainly due to incomplete canopy development (LAI of 2.03), whereas at 86 and 96 DAS due to senescence.  $T_c$  was linearly and positively associated to  $T_a$  at all occasions except 24 DAS (Fig. 1D).

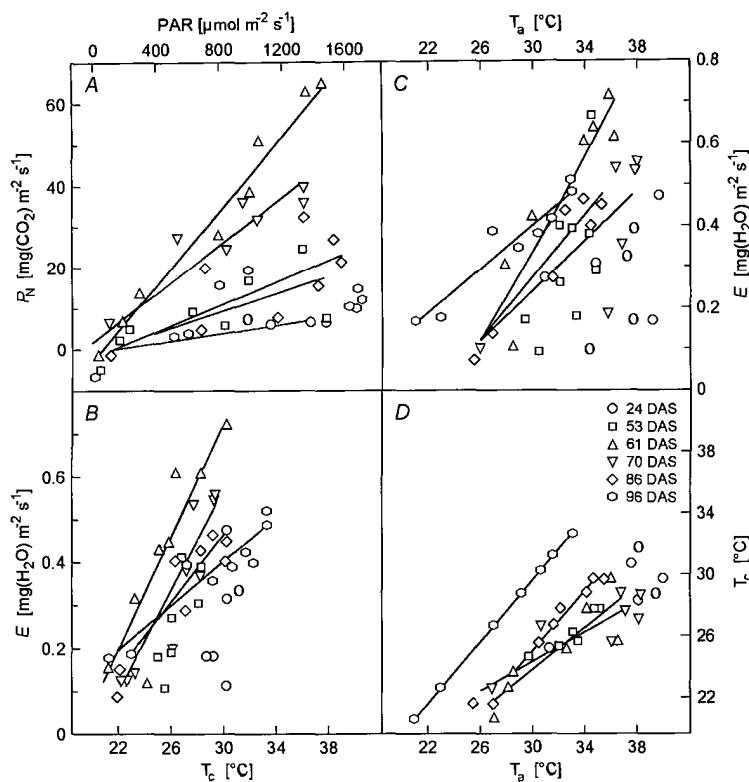



Fig. 2. Relationships between (A): net photosynthetic rate ( $P_N$ ) and photosynthetically active radiation (PAR), (B): transpiration rate ( $E$ ) and air temperature ( $T_a$ ), (C):  $E$  and canopy temperature ( $T_c$ ), and (D):  $T_a$  and  $T_c$  at various growth stages (see Fig. 1). Regression lines are shown only for the relations which are statistically significant ( $p = 0.05$ ). Regressions for different growth stages are:

| DAS |                                    | $r^2$ | $r^2$                      |
|-----|------------------------------------|-------|----------------------------|
|     | <i>A</i>                           |       |                            |
| 24  | $P_N = -0.423 + 0.006 \text{ PAR}$ | 0.808 |                            |
| 53  | $P_N = -0.328 + 0.012 \text{ PAR}$ | 0.568 |                            |
| 61  | $P_N = -3.249 + 0.047 \text{ PAR}$ | 0.978 |                            |
| 70  | $P_N = 1.811 + 0.030 \text{ PAR}$  | 0.859 |                            |
| 86  | $P_N = -1.664 + 0.016 \text{ PAR}$ | 0.538 |                            |
| 96  |                                    |       |                            |
|     | <i>B</i>                           |       |                            |
| 24  | $E_t = -1.314 + 0.055 T_a$         | 0.863 |                            |
| 53  | $E_t = -0.611 + 0.029 T_a$         | 0.610 |                            |
| 61  | $E_t = -0.830 + 0.037 T_a$         | 0.838 |                            |
| 70  | $E_t = -0.398 + 0.027 T_a$         | 0.918 |                            |
|     | <i>C</i>                           |       |                            |
| 53  | $T_c = 9.537 + 0.520 T_a$          | 0.822 |                            |
| 61  | $E_t = -1.336 + 0.069 T_c$         | 0.793 | $T_c = 4.533 + 0.658 T_a$  |
| 70  | $E_t = -1.318 + 0.063 T_c$         | 0.820 | $T_c = 10.655 + 0.469 T_a$ |
| 86  | $E_t = -0.756 + 0.041 T_c$         | 0.836 | $T_c = -1.432 + 0.960 T_a$ |
| 96  | $E_t = -0.398 + 0.027 T_c$         | 0.918 | $T_c = 0.000 + 1.000 T_a$  |
|     | <i>D</i>                           |       |                            |

WUE was highest at 61 DAS (Fig. 3A). Lower WUE recorded at 24 DAS was mainly due to lower  $P_N$ . It was different from that of other crops where higher  $E$  not  $P_N$  caused a decline in WUE (Singh *et al.* 1993, Kumar *et al.* 1994). Diurnally, WUE declined gradually from 08:30 till 16:00 h. The decline in WUE with the rise in  $T_a$  was different at various growth stages (Fig. 3B), maximum at 86 DAS was followed by those at 70 and 96 DAS.

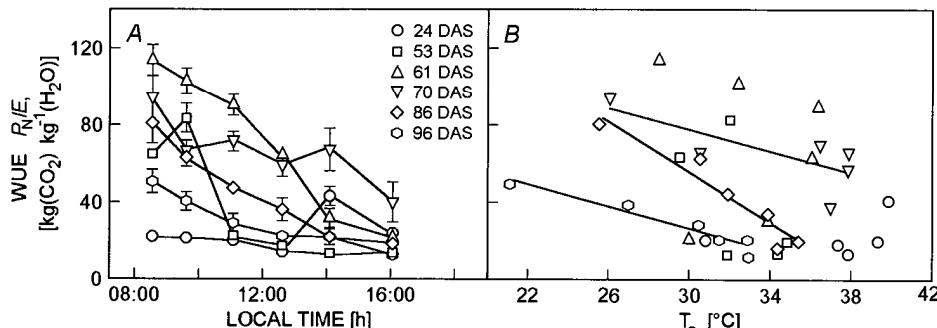



Fig. 3. (A) Daily changes in water use efficiency (WUE), and (B) relationship between WUE and air temperature ( $T_a$ ). The vertical bars in the figures represent standard deviations of means. Regression lines are shown only for the relations which are statistically significant ( $p = 0.05$ ). The regressions for some growth stages in B are: 70 DAS: WUE = 157.78 - 2.64  $T_a$ ,  $r^2 = 0.52$ ; 86 DAS: WUE = 250.75 - 6.45  $T_a$ ,  $r^2 = 0.92$ ; 96 DAS: WUE = 111.61 - 2.80  $T_a$ ,  $r^2 = 0.91$ .

In conclusion, the study highlighted that the daily and ontogenetic variations in  $\Psi_W$ ,  $P_N$ ,  $E$ , and WUE in clusterbean were different from wheat, chickpea, maize, sorghum, pearl millet, *Brassica* species, *etc.* In clusterbean,  $P_N$  and  $E$  was maximum during pod initiation period.  $P_N$  was mainly related to PAR, and  $E$  to both  $T_a$  and  $T_c$ . WUE was not associated with PAR but it was associated with  $T_a$  at late reproductive stages. Clusterbean shed all its leaves under severe water stress during the reproductive period, and started flowering and podding immediately after stress. Clusterbean, therefore, may be a successful legume under terminal drought conditions.

## References

Chaudhary, B.D., Singh, D.P., Singh, P., Kumar, A., Parmu, R.K., Sangwan, V.P.S., Sharma, H.C.: Physiomorphological responses and productivity of chickpea genotypes under moisture stress conditions. - In: Sharma, B., Kulshreshtha, V.P., Gupta, N., Mishra, S.K. (ed.): Genetic Research and Education: Current Trends and Next Fifty Years. Pp. 626-631. Indian Society of Genetics and Plant Breeding, Indian Agriculture Research Institute, New Delhi 1995.

Kumar, A., Agarwal, S.K., Yadav, S.K.: Tissue water relations of *Brassica juncea* and *B. napus* during water stress and recovery cycles. - Haryana J. Agron. 11: 43-47, 1995.

Kumar, A., Elston, J.: Genotypic differences in leaf water relations between *Brassica juncea* and *B. napus*. - Ann. Bot. 70: 3-9, 1992.

Kumar, A., Singh, D.P.: Profiles of leaf conductance and transpiration in *Brassica* species as influenced by water stress at different plant growth stages. - Ann. Biol. 12: 255-263, 1996.

Kumar, A., Singh, D.P.: Use of physiological indices as a screening technique for drought tolerance in oilseed *Brassica* species. - Ann. Bot. **81**: 413-420, 1998.

Kumar, A., Singh, D.P., Singh, P.: Genotypic variation in response of *Brassica* species to water deficits. - J. agr. Sci. **109**: 615-618, 1987.

Kumar, A., Singh, D.P., Singh, P.: Influence of water stress on photosynthesis, transpiration, water use efficiency and yield of *Brassica juncea* L. - Field Crops Res. **37**: 95-101, 1994.

Lush, W.M., Rawson, H.M.: Effects of domestication and region of origin on leaf gas exchange in cowpea (*Vigna unguiculata* (L.) Walp.). - Photosynthetica **13**: 419-427, 1979.

Scholander, P.F., Hammel, H.T., Hemmingsen, E.A., Bradstreet, E.D.: Hydrostatic pressure and osmotic potential of leaves in mangroves and some other plants. - Proc. nat. Acad. Sci. U.S.A. **52**: 119-125, 1964.

Singh, B.R., Singh, D.P.: Agronomic and physiological responses of sorghum, maize and pearl millet to irrigation. - Field Crops Res. **42**: 57-67, 1995.

Singh, D.P., Kumar, A., Singh, P., Sharma, H.C.: Diurnal patterns of wheat canopy photosynthesis, evapotranspiration and water use efficiency at different phases of growth in the field. - Photosynthetica **28**: 143-149, 1993.

Singh, D.P., Peters, D.B., Singh, P., Singh, M.: Diurnal patterns of canopy photosynthesis, evapotranspiration and water use efficiency in chickpea (*Cicer arietinum* L.) under field conditions. - Photosynth. Res. **11**: 61-69, 1987a.

Singh, D.P., Singh, P., Kumar, A., Sharma, H.C.: Transpirational cooling as a screening technique for drought tolerance in oil seed Brassicas. - Ann. Bot. **56**: 815-820, 1985.

Singh, D.P., Singh, P., Sharma, H.C.: Diurnal patterns of photosynthesis, evapotranspiration and water use efficiency in mustard at different growth phases under field conditions. - Photosynthetica **20**: 117-123, 1986.

Singh, D.P., Singh, P., Sharma, H.C., Turner, N.C.: Influence of water deficits on the water relations, canopy gas exchange, and yield of chickpea (*Cicer arietinum*). - Field Crops Res. **16**: 231-241, 1987b.

Singh, D.P., Singh, P., Yadav, S.K., Kumar, A., Sharma, H.C.: Diurnal pattern of plant water relations and canopy photosynthesis of maize, sorghum and pearl millet under field conditions. - Indian J. Plant Physiol. **30**: 425-428, 1987c.

Turner, N.C.: Measurement of plant water status by pressure chamber technique. - Irrig. Sci. **9**: 289-308, 1988.

Yadav, S.K., Kumar, A., Singh, D.P.: Micro-environment, water relations, and yield of mustard cultivars in unirrigated and irrigated soils. - J. trop. agr. vet. Sci. **28**: 149-153, 1990.

Yadav, S.K., Singh, D.P., Singh, P., Kumar, A.: Diurnal patterns of photosynthesis, evapotranspiration and water use efficiency in barley under field conditions. - Indian J. Plant Physiol. **30**: 233-238, 1987.