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Abstract

Yields of wheat in semiarid and arid zones are limited by drought, and water condition is very important at each stage of
development. Studies carried out at Loess Plateau in the northwestern part of China indicated that yield of spring wheat
(Triticum aestivum L.) cv. Dingxi 81-392 was reduced by 41 % when subjected to water stress. The effects of two water
regimes on net photosynthetic rate (Py), stomatal conductance (g,), and intercellular CO, concentration (C)) were
investigated at the jointing, booting, anthesis, and grain filling stages. Low soil moisture in comparison to adequate one
had invariably reduced Py during the diurnal variations at the four growth stages. Py and g, in both soil moisture regimes
was maximally reduced at midday. C; and the stomatal limitation fluctuated remarkably during photosynthesis midday
depression processes, especially at the grain filling stage. Hence atmospheric drought at midday was one of the direct
causes inducing stomata closure and the g, depression, but it was beneficial for maintaining stable intrinsic water use
efficiency. Fluctuation in C; implicated that non-stomatal limitation also plays an important role during the period of
photosynthesis midday depression. Consequently stomatal and/or non-stomatal limitation are the possible cause of the

midday photosynthesis decline.
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Introduction

Hilly and gully area of the Loess Plateau in the
northwestern part of China is a typical semiarid area
where dry land farming has been practiced for more than
4000 years. Wheat with very low yield is the major grain
crop occupying 43.9 % of the total cultivated area of the
Plateau. The average yield in this area is 1.5 t ha
compared to 6.0 t ha™ in traditional arcas (Huang 1993).
A decrease in photosynthesis caused by the drought
environment of the Plateau, despite abundance of solar
radiation (Chen and Mu 1993), is a possible cause of the
realised low yields. Most of the previous studies on
effects of photosynthesis stress on the crop yield were

Materials and methods

An experiment was conducted at Guyuan Ecological
Research Station, which is located in a typical semiarid
area of the Loess Plateau. Spring wheat (7irticum
aestivum L.) cv. Dingxi 81-392 was sown in plastic pots
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done in the laboratory under controlled conditions
(Azcon-Bieto 1983, Maroco et al. 1997, Allen et al
1998). However, the findings of these studies are not
sufficient for fully understanding the regulatory
mechanisms of plant photosynthesis under natural field
conditions. Several researchers (Kalt-Torres ef al. 1987,
Shan and Chen 1993, Xu and Wu 1996, Escalona ef al.
1999) also emphasised the necessity of the case studies.
The experiment described in this paper was undertaken to
assess the effects of drought on the diurnal photosynthetic
parameters at major growth stages of spring wheat in the
semiarid environment.

placed in the field and covered by polyvinyl sheet only
when it was raining. Water was supplied from plastic
pipes inserted vertically into the soil. Forty-two days after
sowing, soil moisture was kept constant at 17 % or
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adjusted to 11 % to represent control and water stress
treatments, respectively. Soil moisture was checked
diurnally and lost water was replenished by bringing the
pots back to their original mass set for the planned
moisture contents.

Expanded top leaves or flag leaves were selected at
the jointing, booting, anthesis, and grain filling stages for
investigations. Leaf net photosynthetic rates (Py) were
measured with a gas-exchange-measuring system
according to Long and Hallgren (1985). Infrared gas
analyzer (LCA2 Shimadsu, Nagoya, Japan) and dew point
meter (HMI33 Vaisala OY, Finland) was used for
measuring Py and transpiration rate. The microclimate
factors including air temperature, relative humidity (RH),
and photosynthetically active radiation (PAR) were

Results

During the initial stage of the experiment, seedling
establishment was excellent. Seedling growth was rapid.
Average plant height, 42 d after sowing, was 8.0£0.4 cm.
Soil moisture stress, imposed 42 d after sowing, did not
affect the onset of plant growth stages or physiological
maturity. Jointing, booting, anthesis, and grain filling in
both control and stress treatments were first observed 50,
60, 78, and 85 d after sowing, respectively. Physiological
maturity, as indicated that heads lost of green colour, and

recorded at the same time with a series of irradiance
sensors and thermo-sensors (Licor Li-193B, Lincoln, NE,
USA). Vapour pressure deficit (VPD) in the atmosphere
was converted from the relative humidity and saturated
water vapour at air temperature. Stomatal conductance
(g,) and intercellular CO, concentration (C;) as well as
stomatal limitation (L,) were calculated according to the
equations of Caemmerer and Farquhar (1981) and Jones
(1998).

Experimental values were analysed for significance
by Turkey's HSD. The curves were obtained from diurnal
time on clear days at the jointing, booting, anthesis, and
grain filling stages. Polynomial regressive equations were
used to represent the diurnal cases of the changes in PAR,
VPD, Py, g, and C, by data fitting.

grain ripening, was reached at about 108 d irrespective of
soil moisture status. Under soil water stress, plant height,
shoot and root biomass of wheat were reduced by 23.9,
38.6, and 34.2 %, respectively. Soil water stress caused
water consumption, grain yield, and biomass of wheat
reduced by 50.70, 41.15, and 38.63 %, respectively.
However, water use efficiency based on grain yield
(WUEg) increased by 19.4 % (Table 1).

Table 1. Effect of soil water stress on the growth, yield, and water use of spring wheat. ET, evapotranspiration amount during whole

growing season, WUEg, grain yield/ET.

Soil water Plant height Top biomass Root mass Seedmass  Seed number Grain Yield ET WUE%
content [%] {cm] [e pot’] [g pot™) [mgseed') perhead [g pot™] [kg pot*] [g kg (H,0))
17 77.69£0.94 54.96+0.97 15.54+0.52 44.31+£0.43 27.64+ 0.39 2555+ 0.64 19.11£0.16 1.34£0.04
11 59.11+£0.73  33.774£0.63 10.22+0.45 38.58%+0.30 18.56+ 049 15.04+ 0.34 9.42%0.14 1.60£0.04

Py indicated a two-peak diurnal curve for both control
and soil water stress treatments (Fig. 1). Diurnal variation
of leaf Py, irrespective of soil water status, increased
drastically at 11:00 h, then declined to a very low value at
midday, and gradually recovered in the afternoon. Plants
stressed by low soil moisture invariably had a lower Py
than the control. The maximum differences between
treatments were recorded at midday. Recovery of Py from
the midday decline was slower for the stressed plants than
the control at the grain filling stage.

Diurnal variation of g,, irrespective of soil moisture
status, showed a similar trend to that of leaf Py. The
recovery of g, after midday depression was, invariably,
slower in stressed than non-stressed plants. The one-peak
curve of diurnal change in vapour pressure deficit showed
that the most severe water stress in the atmosphere also
occurred at midday. At booting stage leaf water potential,
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irrespective of soil moisture status, was higher than that
at grain filling stage and at the same time leaf
temperature was about 10 °C lower than that at grain
filling. Leaves of stressed plants invariably had lower
water content (86.3 and 76.8 %) than those of the control
(90.1 and 83.1 %, Table 2). These results indicated that
leaf photosynthetic capacity was closely related to leaf
age, water status, and air temperature. Diumal variations
of Py, however. were almost parallel with that of g,.
Diurnal g; fluctuations reflected the stomata aperture,
which is controlled by osmotic adjustment in the
surrounding cells (Jones 1995, Grill and Ziegler 1998). A
closely linear correlation between Py and gs was obtained
(** =0.924""; Fig. 2). Under either atmospheric drought
or soil water stress conditions stomata operate probably
in such a way as to minimise water loss relative to the
amount of CO; uptake. The stable ratio of Py to g
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Fig. 1. Diumnal variations of net photosynthetic rate (Py), stomatal conductance (&), intercellular CO, concentration (C)),
photosynthetically active radiation (PAR), air temperature, and vapour pressure deficit (VPD) at the jointing (4), booting (B), anthesis
(C), and grain filling (D) stages of spring wheat on the Loess Plateau. ®: control, m: water stress treatment, A: PAR, ¢: air

temperature, ¢: VPD. Vertical bars represent standard error.

Table 2. Leaf water status and temperature at midday of four growth stages.

Growth stages Water content [%] Water potential [Mpa] Leaf temperature [°C]
control stressed control stressed control stressed
jointing 93.34+0.55 91.05+0.64  -0.09+0.02 -0.13+0.02  20.8+0.2 21.2+03
booting 90.07+0.67 86.28+0.38  -0.16+0.02 -0.27+0.03 25.7+¢0.3  27.1%0.2
anthesis 86.70£0.69 81.52+¢047  -0.25%0.03  -0.53+0.05 30.740.4  33.040.5
grain filling 83.06+0.52 76.75+80.43  -0.43x0.04 -1.06+0.07 35.620.3  38.9£0.7

indicated that under the semiarid conditions spring wheat
trended to maintain optimum intrinsic WUE so as to
assist in conserving water (Ludlow 1980, Cowan 1982,
Davies and Pereira 1992, Schulze 1994).

Diurnal variations in C; and L, showed significant
fluctuations, and these oscillation phenomena occurred in
all the four stages both under stress and non-stress
conditions, however, the oscillation range and frequency
were variable at the fourth growth stage. At the jointing
stage the stomatal limitation of the stressed plants was

higher than that of the control during photosynthesis
midday depression process. In contrast, at the grain filling
stage, the stomatal limitation values of the stressed plants
were relatively lower than that of non-stressed plants.
Hence both stomatal and non-stomatal limitation may
induce photosynthesis midday depression alternatively
and/or multiplied. Non-stomatal limitation was closely
linked with leaf senescence, high air temperature, and
with high vapour pressure deficit in the semiarid area of
Loess Plateau.
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Discussion

It is easy to study the effect of environmental factors such
as water, irradiance, carbon dioxide, and temperature on
crop photosynthesis separately under controlled
conditions (Kirschbaum and Farquhar 1984, Nobel 1991,
Comstock and Ehleringer 1993, Barradas ef al. 1994).
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Fig. 2. Relationship between Py and &; at four growth stages of
spring wheat. ®: control, O: water stress treatments.

Under natural conditions, however, factors contributing
to photosynthesis variation are more complex (Kobayashi
et al. 1999). Usually several of the factors involved vary
simultaneously and these anticipate intricacy (Jones
1992). According to Ferris ef al (1998), Py of the
soybean leaf was fully recovered under water deficit in
elevated CO,, while it remained reduced under water
deficit in ambient CO, Leaf Py of millet and rice
increased at 22 °C and decreased at 42 °C, whereas in
wheat it was the highest at 22 °C and decreased at lower
temperature (Kassim and Paulsen 1999). In spite of
carbon dioxide and temperature effects, there are at least
three other factors that have a direct connection with the
effect of water stress on photosynthesis. We found that
photosynthesis was variable under different soil moisture
contents. Under the gradual soil drying, wheat exhibited
higher Py than under the fast soil drying conditions.
Under the former osmotic adjustment process it increased
to a certain extent while under the latter process it
remained constant. Osmotic adjustment allows for
maintenance of photosynthesis and growth by stomatal
adjustment and photosynthetic adjustment (Turner et al.
1986, Deng ef al. 1990, Shangguan et al. 1999). In
addition, photosynthetic limitation was affected variably
by the different strengths of soil water stress. We found
that under the mild and/or moderate soil water stress,
photosynthetic depression was caused by stomatal closure
or by stomatal limitation but not by biochemical
reactions. However, under severe soil water stress, non-
stomatal factors including some limiting enzymes were
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probably responsible for the decline in photosynthetic
capacity (Du et al. 1996, 1998). Photosynthetic
depression was greatly linked to the water stress position
and this agrees with the findings of Schulze (1986).
Midday declines in photosynthesis were mainly induced
by severe vapour pressure deficit, and stomatal limitation
was suggested as a major cause (Xu and Shen 1997).
Under the natural semiarid conditions, however, this
decline usually resulted from soil water stress that
induced leaf water potential decrease at midday. Similar
results were reported by Sheriff (1982) and by Shi ef al.
(1997). Both soil water stress and atmospheric drought
simultaneously induced the midday depression in Py (Fig.
1). This is consistent with that both stomatal and non-
stomatal limitations were responsible for photosynthetic
decline in spring wheat under semiarid environment
(Figs. 2 and 3).
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Fig. 3. Diurnal oscillations of stomatal limitation (L) at the
jointing (A4), booting (B), anthesis (C), and grain filling (D)
stages of spring wheat in the semiarid environment. e: control,
B water stress treatments. Vertical bars represent standard
error.

It is possible that the relation of g, and soil moisture
stress was created or caused by synthesis of abscisic acid
(ABA) by roots in response to soil drying. ABA is then
transported through the xylem to leaves, causes the
regulation of several ion channels in guard cells, and
triggers stomatal closure (Berkowitz and Whalen 1985,
Davies and Zhang 1991, Hartung and Slovik 1991, Slovik
and Hartung 1992). Some researchers linked this with the
role of farnesylations that has been connected with ABA
signal conduction (Grill 1998, Pei ef al. 1998). However,
photosynthetic carbon assimilation catalyzed by ribulose-
1,5-bisphosphate carboxylase/oxygenase (RuBPCO), an
enzyme located in the chloroplast stroma, can not be
ruled out. The RuBPCO holoenzyme is assembled in a
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catalytically inactive form and is activated by RuBPCO
activase (RCA) (Miziotko and Lorimer 1983, Portis
1992, Mott et al. 1997). Expression of RCA is organ-
specific, developmentally regulated by the leaf age, and it
is light inducible. Study on the transcription of the RCA
gene showed that relative mRNA abundance is in form of
oscillation, and thus there are multiple clock-response
elements (CREs) that act additively or multiple-actively
to confer high-amplitude oscillation (Liu et al. 1996).
Diurnal oscillation in intercellular CO, concentration
(Fig. 3) under the semiarid conditions is closely
connected with the activation of RuBPCO, which is
affected by the oscillated transcription of the RCA gene.
Activation status of RuBPCO plays one of the important
roles in the diurnal oscillation of stomatal limitation.
Diurnal photosynthetic changes in some spring wheat
cultivars were closely related to local climatic and soil
moisture (Grantz 1990, Ray and Sinclair 1997). Even for
the sufficient soil moisture conditions, the notable
midday decline in g, that was parallel to Py depression
resulted from severe water vapour deficit at midday (Figs.
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