

Postharvest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality

L. NEDBAL^{***}, J. SOUKUPOVÁ^{***}, J. WHITMARSH^{***}, and M. TRTÍLEK⁺

Laboratory of Applied Photobiology & Bio-Imaging, Institute of Landscape Ecology, Academy of Science of the Czech Republic, Zámek 136, 373 33 Nové Hrady, Czech Republic^{}*
*Photosynthesis Research Center, Faculty of Biological Sciences, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic^{**}*
*Department of Biochemistry, University of Illinois and Photosynthesis Research Unit, Agricultural Research Service/USDA, Urbana, IL 61801, USA^{***}*
Photon Systems Instruments, Ltd., Koláčkova 39, 621 00 Brno-Řečkovice, Czech Republic⁺

Abstract

We demonstrate the feasibility of assaying and predicting post-harvest damage in lemons by monitoring chlorophyll (Chl) fluorescence. Fruit quality was assayed using a commercial instrument that determines photosynthetic performance by imaging Chl fluorescence parameters under different irradiances. Images of Chl fluorescence from individual lemons reveal that photosynthesis is active throughout the post-harvest ripening process. Because photosynthesis is highly sensitive to biotic and abiotic stress, variations in Chl fluorescence parameters over the surface of a lemon fruit can be used to predict areas that will eventually exhibit visible damage. The technique is able to distinguish between mould-infected areas that eventually spread over the surface of the fruit, and damaged areas that do not increase in size during ripening. This study demonstrates the potential for using rapid imaging of Chl fluorescence in post-harvest fruit to develop an automated device that can identify and remove poor quality fruit long before visible damage appears.

Additional key words: *Citrus limon*; mould; *Penicillium digitatum*.

Introduction

The intensity of Chl fluorescence from photosynthetic tissues provides a non-invasive signal that can be used to determine photosynthetic activity (reviewed in Krause and Weis 1991, Dau 1994, Govindjee 1995). To make quantitative estimates of photosynthetic performance, the relative intensity of Chl α fluorescence is determined under different irradiances as a function of irradiation time. Kinetic fluorescence measurements can be used to estimate photosystem (PS) 2 activity, which is highly sensitive to conditions that impair photosynthesis, including high and low temperatures (e.g., Baker *et al.* 1983, Havaux and Lannoye 1984, Strand and Öquist 1985, Bolhár-Nordenkampf and Lechner 1988, Havaux 1992, Nauš *et al.* 1992, Briantais *et al.* 1996, Lang *et al.*

1996, Jagtap *et al.* 1998, Balota and Lichtenthaler 1999), excess radiant energy (e.g., Strand and Öquist 1985, Krause 1988, Yerkes *et al.* 1990, Nedbal *et al.* 1990, Havaux 1992, Gilmore and Govindjee 1999), low water potential (e.g., Havaux 1992, Jefferies 1994, Cerovic *et al.* 1996, Lang *et al.* 1996, Berg *et al.* 1997, Chakir and Jensen 1999, Osmond *et al.* 1999), infection (e.g., Balachandran *et al.* 1994, Daley 1995, Peterson and Aylor 1995, Scholes and Rolfe 1996, Seaton *et al.* 1996, Bowyer *et al.* 1998) as well as other stress factors (e.g., Blackwell and Gilmour 1991, Endo *et al.* 1995, Heisel *et al.* 1996, Jimenez *et al.* 1997, Lorenzini *et al.* 1999). Over the past two decades interpretation of Chl fluorescence emission has evolved to the point that

Received 16 November 2000, accepted 15 February 2001.

Fax: ++420-335-361111, e-mail: nedbal@greentech.cz

Abbreviations: Chl, chlorophyll; F_0 , fluorescence emission measured in dark when the primary quinone acceptor Q_A is oxidised and non-photochemical quenching is inactive; F_M , fluorescence emission measured during a strong pulse of light when Q_A and the plastoquinone pool are reduced and non-photochemical quenching is inactive; F_V , variable fluorescence in the absence of non-photochemical quenching ($F_V = F_M - F_0$); PS, photosystem.

Acknowledgements: The low-temperature fluorescence spectra were measured by Dr. Pavel Šiffel from the Institute of Molecular Biology in České Budějovice. Mr. Lukáš Oborský helped us with the image analysis.

commercially available fluorometers are routinely used to assay the activity of photosynthesis in plants, algae, and cyanobacteria. While there are several successful techniques to estimate photosynthetic activity based on fluorescence measurements, one of the simplest relies on measurements of the relative intensity of three fluorescent levels: F_0 , the minimum fluorescence yield (typically measured under non-actinic radiation in the dark), F_M , the maximum fluorescence yield (typically measured during a saturating pulse), and $F(t)$, the instantaneous fluorescence yield measured as a function of time. Kinetic analysis based on measurements of these three fluorescence parameters can reveal the photochemical yield of PS2 and the amount of non-photochemical quenching in the PS2 antenna system (e.g., Duysens and Sweers 1963, Malkin and Kok 1966, Schreiber *et al.* 1986, Genty *et al.* 1989, Krause and Weis 1991, Dau 1994, Govindjee 1995). For example, numerous studies show that a decrease in the variable fluorescence, F_V (defined as $F_V = F_M - F_0$), or a loss of F_V/F_M are reliable indicators of stress induced damage in plants (e.g., Havaux and Lannoye 1984, Carter and Miller 1994, Chakir and Jensen 1999, Csintalan *et al.* 1999).

Although most kinetic fluorometers have been developed to measure Chl fluorescence from green tissues, which are high in Chl content, the extraordinary sensitivity of current instruments enables measurements in non-green plant tissues that have a relatively low Chl content. This includes many types of ripening fruit that during development degrade the chloroplasts (including Chl) that are contained in the fruit skin. Even non-green fruits that are highly coloured (e.g., apples, tomatoes), contain active chloroplasts that yield a Chl fluorescence

signal of sufficient strength that it can be used as a probe of photosynthetic activity in the fruit skin (e.g., DeEll *et al.* 1995, Ciscato *et al.* 2000). Brown and Sarig (1994) and Ciscato *et al.* (2000) showed that measurements of fluorescence intensity offer a promising technique for segregation of low- and high-quality fruit. The introduction of rapid imaging instrumentation that maps Chl fluorescence parameters (e.g., Daley *et al.* 1989, Raschke *et al.* 1990, Mott *et al.* 1993, Genty and Meyer 1994, Bro *et al.* 1995, Ning *et al.* 1995, Siebke and Weis 1995, Niyogi *et al.* 1997, 1998, Oxborough and Baker 1997a,b, Meyer and Genty 1998, Nedbal *et al.* 2000) offers a non-invasive technique to determine photosynthetic activity over the surface of individual fruit.

Here we use a recently developed kinetic imaging fluorometer (Nedbal *et al.* 2000) to monitor fluorescence emission parameters from individual lemon fruit. The values show that post-harvest imaging of Chl fluorescence can be used to identify regions of the lemon skin that will eventually show visible damage, including infections that can spread from one lemon to another. By comparing fluorescence images with subsequent fruit quality, we identify fluorescent parameters that are most robust in predicting surface damage. Although this study was of a limited scope, the results demonstrated that Chl fluorescence imaging can identify infected lemons and damaged lemons before visible signs are evident. Based on these results we suggest that Chl fluorescence imaging of lemons can serve as the basis for developing an automated machine that removes damaged or infected fruit long before visible symptoms appear. It is likely that this technique can be applied to other ripening fruits.

Materials and methods

Fruits: Lemons purchased at local markets were sorted by ripeness and in some cases by visible defects. Three classes of Chl fluorescence heterogeneity were identified, one of which correlated with subsequent fruit decay. To establish the feasibility of the assay for identifying fruit that would eventually exhibit visible damage, Chl fluorescence images of individual lemons were compared with coloured photographic images during post-harvest development. To investigate mould damage, a needle was used to transmit mould from an infected lemon to a healthy lemon.

Kinetic imaging fluorometer: Chl fluorescence imaging was performed using a commercial imaging fluorometer (*FluorCam*, *P.S.Instruments*, Brno, Czech Republic) described in Nedbal *et al.* (2000). The instrument uses a CCD camera to capture Chl fluorescence images as a function of time under different irradiances. Three key fluorescence parameters [F_0 , $F(t)$, and F_M] are measured

using protocols developed using the *FluorCam* software package. First, images of the dark-adapted fluorescence level, F_0 , were determined using non-actinic measuring flashes. Next, a 1-s duration pulse of actinic radiation [$2000 \mu\text{mol}(\text{photon}) \text{ m}^{-2} \text{ s}^{-1}$] was given to reduce the plastoquinone pool connected to the active reaction centres of PS2. The maximum fluorescence level, F_M , was measured during the actinic pulse using 12 measuring flashes. To improve the signal to noise ratio, both F_0 and F_M images were averaged.

Low-temperature emission spectra: The fluorescence emission spectra were measured with discs of healthy and mildew-infected lemon peel tissues (diameter *ca.* 10 mm) using a *Fluorog spectrofluorometer* (*SPEX*, USA). All spectra were obtained at 77 K with the spectral bandwidth of emission and excitation monochromators of 2 and 4 nm, respectively. The excitation wavelength was 620 nm.

Results and discussion

As lemons ripen, changing in colour from green to yellow, there is a decrease in the concentration of Chl in the fruit skin (see also Tuba 1981, Gros and Flugel 1982, Roggero *et al.* 1986, Minguez-Mosquera and Hornero-Méndez 1994, Minguez-Mosquera and Gallardo-Guerrero 1995, Merzlyak *et al.* 1998, Gandul-Rojas *et al.* 1999). The later stages of this transformation are pictured in the top panel of Fig. 1, which shows four different lemons during ripening, ranging from green/yellow on the left

side to bright yellow on the right side. The bottom panel shows the corresponding images of the maximum Chl fluorescence (F_M), which is proportional to the Chl concentration of the skin. The contrast between the fruits is significantly greater in the fluorescence images compared to the photographic images. As expected, the bright yellow lemon on the right side emits the least Chl fluorescence. However, the signal is strong enough to generate an image of a good signal/noise ratio.

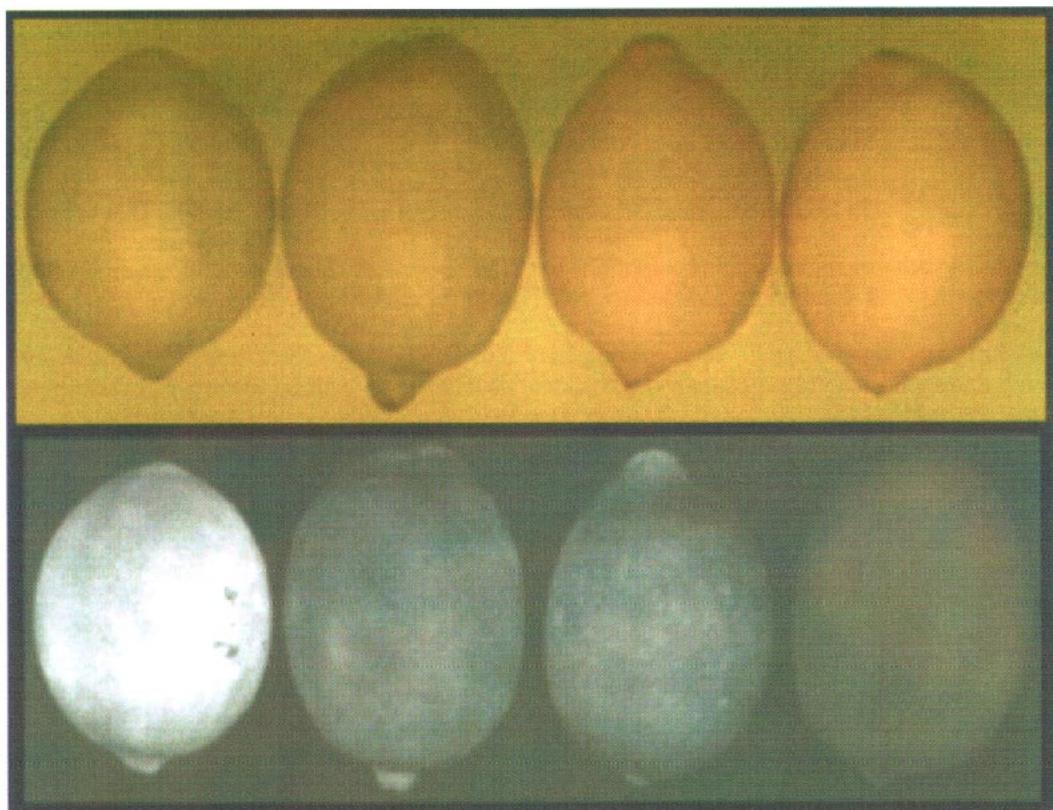


Fig. 1. The *top panel* shows the actual colours (panchromatic) of four lemons at different stages of ripening as the fruit changes from yellow/green to bright yellow. The *bottom panel* shows images of the maximum chlorophyll fluorescence, F_M , of the lemons shown in the top panel. F_M was measured during a 1 s exposure of the fruits at an irradiance of 2000 $\mu\text{mol}(\text{photon}) \text{ m}^{-2} \text{ s}^{-1}$.

A potential problem in using Chl fluorescence to assay lemon quality is the uneven distribution of Chl over the fruit skin during ripening. Fig. 2 shows a lemon that has two visible green areas (left image), one of which is readily recognisable, whereas the other spot is more difficult to see. The middle three images show F_0 , F_V , and F_M (Fig. 2). In each of these images the green areas of the lemon are easy to identify due to the relatively higher Chl concentration. The intensity of the variable fluorescence F_V ($= F_M - F_0$) reveals that photosynthesis is active over the entire surface of the lemon. The ratio of F_V/F_M is proportional to the maximal quantum yield of PS2 photo-

chemistry (Genty *et al.* 1989). The image on the right in Fig. 2 shows that F_V/F_M is uniform over the lemon, indicating that quantum yield of PS2 is uniform over the fruit peel. These data demonstrate that Chl fluorescence imaging can identify areas of high Chl content and determine if the Chl is engaged in photosynthesis. In the example shown in Fig. 2 the heterogeneous areas differ by Chl concentration, but not by PS2 activity. During ripening the heterogeneity in the Chl content disappeared as the lemon turned uniformly yellow. This result demonstrates that imaging a single fluorescence parameter is not sufficient to predict future damage.

Fig. 3 shows that damaged regions of a lemon skin give a fluorescence signature that is significantly different from healthy regions. The lemon shown in this colour photograph has several damaged areas that appear as various shades of brown. The images to the right in Fig. 3 show F_0 , F_V , and F_M emissions and the ratio F_V/F_M .

Comparison of the fluorescence parameters in the damaged regions reveals two distinct signatures, both of which are easily distinguishable from the signature of healthy regions. Damaged areas that result in little or no increase of F_0 are enclosed in blue. In contrast, damaged areas enclosed in red exhibited a very high F_0 , low F_V ,

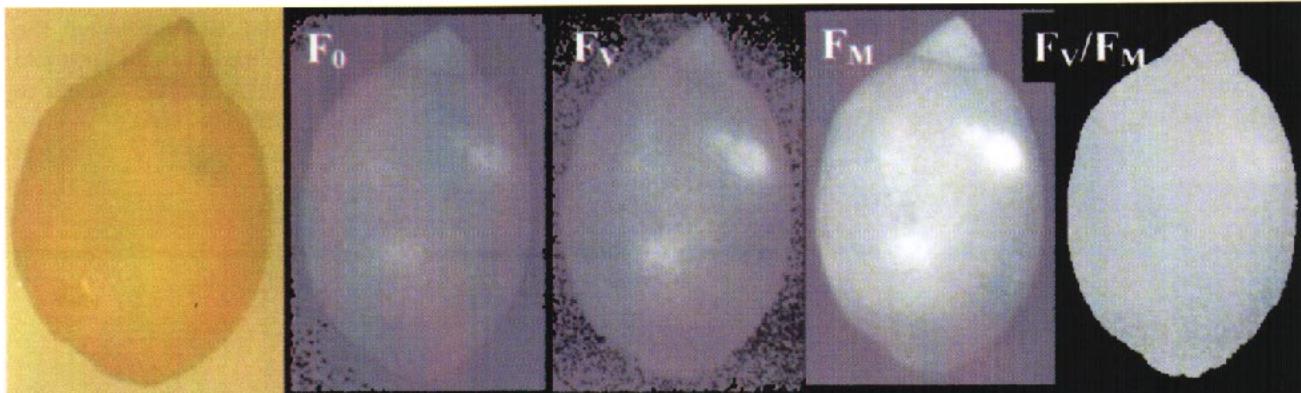


Fig. 2. A lemon with two green spots is shown in the colour photograph. Chlorophyll fluorescence images of F_0 , F_V , and F_M of the lemon are shown in the three images in the middle. The image of the F_V/F_M ratio is shown at the far right.

and low quantum yield (F_V/F_M). After these images were taken, we observed that the damaged areas enclosed in red developed a mould infection that, within a few days, spread over most of the lemon skin (values not shown). These results demonstrate that imaging fluorescence parameters can be used to discriminate between damaged areas that, although visually similar, have different under-

lying causes. This is illustrated in Fig. 3, where there are few if any visual clues to distinguish between the brown spots. However, those spots encircled in red, which have a distinct fluorescence signature (high F_0 , high F_M , low F_V/F_M) develop extensive mould damage, whereas those spots circled in blue, although damaged, remain relatively stable and do not increase in size.

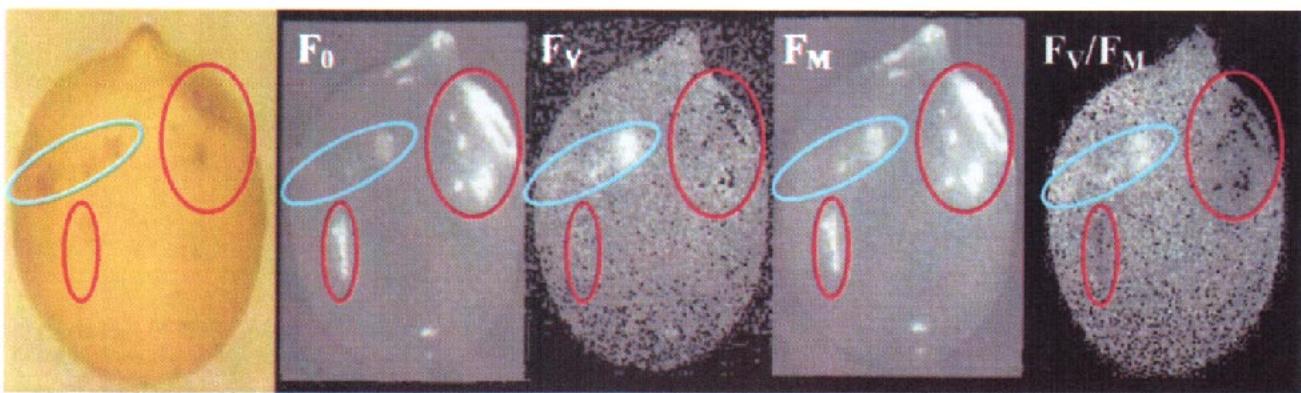


Fig. 3. The photograph shows a lemon exhibiting several areas of visible damage (brown spots). The other panels show the fluorescence images of F_0 , F_V , F_M , and F_V/F_M . To increase contrast, the sensitivity (gray scale) used to show F_V was 4 times larger than in the F_0 and F_M images. The ratio F_V/F_M is shown using gray scale where black is $F_V/F_M = 0$ and white is 1. Red-circled areas developed 2 d later a visible green mould growth. Blue circled area remained stable.

Fig. 4 shows how a mould infection spreads over the surface of a lemon over a 4-d period. The lemon was infected by puncturing the skin with a needle contaminated by the green mould *Penicillium digitatum*. As can be seen in the photos shown in the top row of Fig. 4, for three days following infection the only visible symptom was a small brown spot at the puncture site. During the 3rd day, the tissue surrounding the puncture

site became soft. On the 4th day only a tiny green mould spot was seen. In contrast, the spread of the mould was readily detected by fluorescence measurements within 48 h after the infection (Fig. 4). The F_0 signal was highly elevated in the infected area. The F_V signal was diminished, whereas F_M slightly increased in and around the puncture site. This experiment was repeated using 10 different lemons, each of which was infected, by using

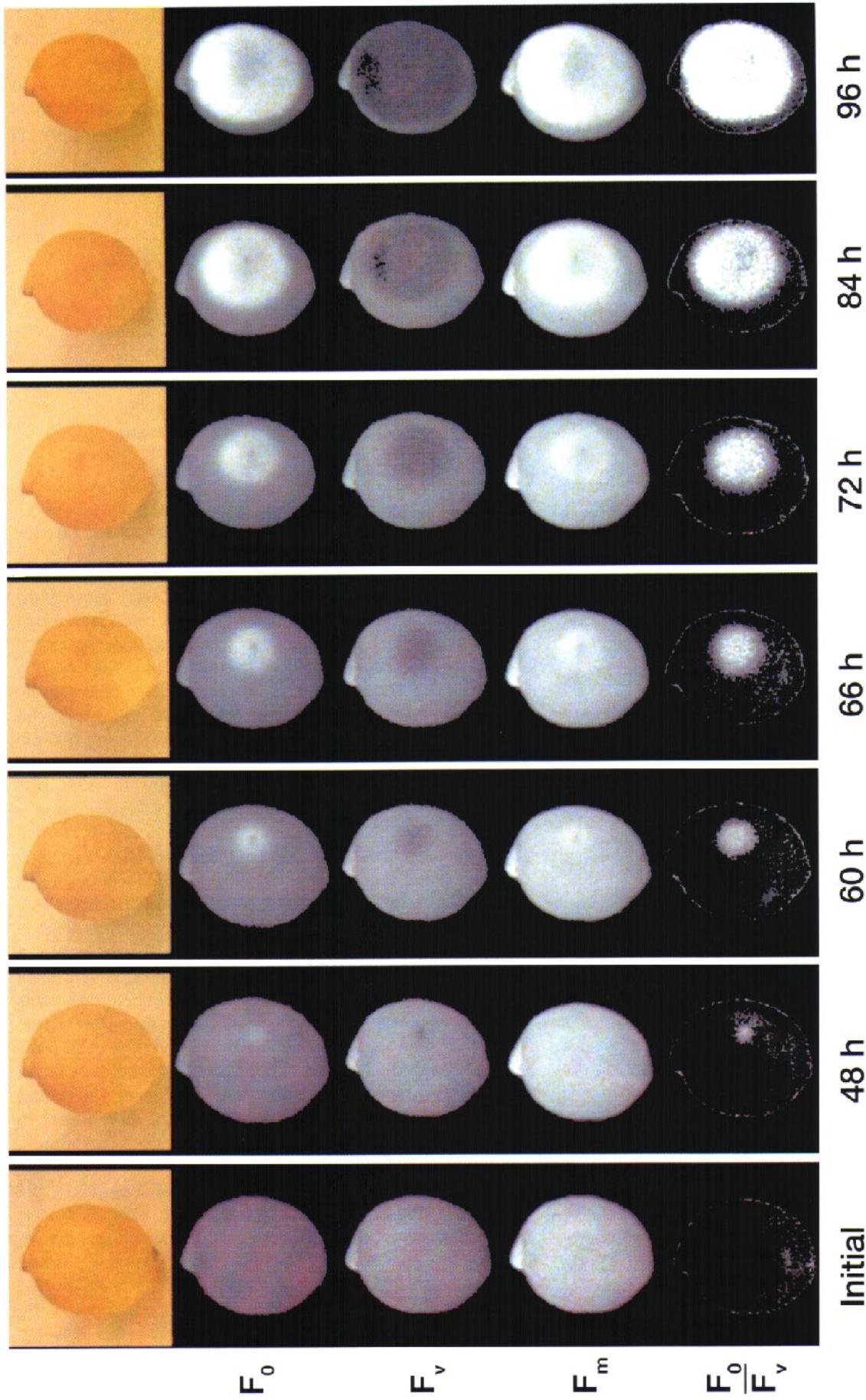


Fig. 4. The lemon fruit was infected by puncturing the skin with needle contaminated with the green mould *Penicillium digitatum*. The top row shows colour photographs of the lemon over a period of 4 d following infection. The black and white images show fluorescence parameters measured over the same time period (F_₀, second row from top; F_ᵩ, third row from top; F_ᵩ, fourth row from top; and F_₀/F_ᵩ, bottom row).

a contaminated needle. In every case the sequence of events and the time course of the infection and the fluorescence signals were the same as shown in Fig. 4 (values not shown).

Fig. 4 shows that the mould-infected tissues were characterised by an increase in F_0 and a decrease in F_v . To enhance detection of damaged fruit at an early phase of mould infection, we examined different methods of converting the image information into simpler parameters that would offer greater contrast. To assist in this effort we examined the histogram of F_0 , F_v , and F_M for a lemon during the early stage of infection (Fig. 5). The histograms reveal the relative frequency of pixels in the image (vertical axis) that recorded given fluorescence parameter (horizontal axis). The histogram of F_0 confirms the high contrast seen in the image between the infected areas (F_0 fluorescence intensity centred at 135 relative units) and the healthy areas (F_0 fluorescence intensity centred at 60 relative units). Fig. 5 shows that the histogram of F_M is a broad band that does not differentiate between damaged and healthy tissues, which is due to the fact that the actinic pulse eliminates photochemical quenching in the healthy tissue. In contrast, a clear heterogeneity is evident in the F_v image (Fig. 4) and in the histogram of the F_v image (Fig. 5).

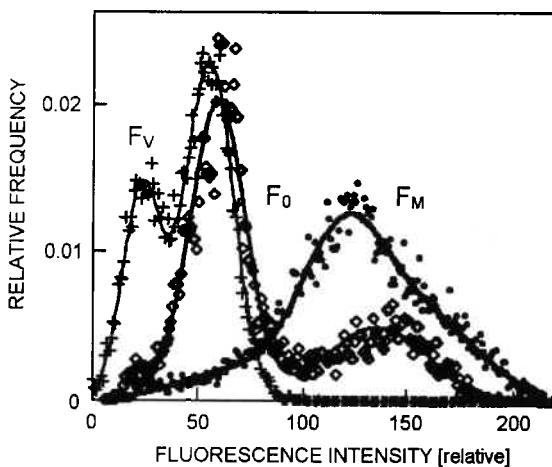


Fig. 5. The frequency (Y-axis) of various levels of the fluorescence parameters (X-axis) is shown for a lemon infected by the green mould *Penicillium digitatum*. The values correspond to the 3rd d of infection.

The fluorescence intensity band centred at about 55 relative units represents F_v in the healthy tissue, whereas the band around 23 relative units shows a low F_v from the infected area. Overall, the analysis of the histograms indicates that the highest contrast between the healthy and infected areas of lemon skin is the ratio of the images of F_0/F_v (Fig. 4, bottom row).

In an earlier study, Beaudry *et al.* (1998) described application of non-imaging measurements of F_v/F_M for quality assessment of apples and other fruits and

vegetables. In contrast to their results, we found that for lemons F_0/F_v gives significantly higher contrast between the infected and healthy places compared to F_v/F_M . In addition, imaging fluorescence parameters, unlike non-imaging instrumentation, allows the rapid identification of the extent and severity of damaged areas.

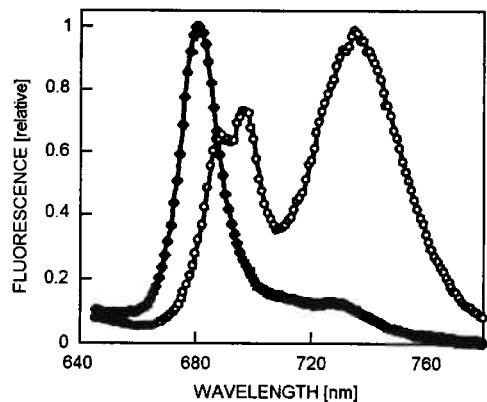


Fig. 6. Fluorescence emission spectra of healthy (open circles) and infected (solid circles) lemon peel measured at 77 K. The spectra were taken 3 d after the infection.

In an attempt to reveal the mechanism causing the distinct fluorescence signature of the infected lemon peel tissue we measured the fluorescence emission spectra at 77 K (Fig. 6). As expected, the spectrum of the healthy tissue (open circles in Fig. 6) was similar to the spectrum of healthy plant cells (Murata and Satoh 1986). The two short-wavelength bands emitted at near 685 and 695 nm are due to PS2 and its proximal antennae, whereas the band at 735 nm band is due mainly to PS1. The fluorescence emission spectrum of the damaged tissue is markedly different with a dominant band at 680 nm that has been attributed to light-harvesting complexes (LHC2) that are disconnected from PS2 reaction centres (e.g., Anderson *et al.* 1978, Satoh and Butler 1978, Satoh 1980, Bose 1982, Darr and Arntzen 1986, Murata and Satoh 1986, Allen and Staehelin 1992). The values in Fig. 6 indicate that reaction centres in the damaged tissue are undergoing degradation. We speculate that this destruction could be due to acidification of the peel tissue induced by the infection. The light-harvesting complexes are relatively resistant to low pH compared to reaction centres (Siefermann-Harms and Ninnemann 1983), and so would become the dominant source of fluorescence in the infected tissue. Similar phenomenon, exhibiting identical fluorescence emission spectra at 77 K, was observed in isolated chloroplasts exposed to a low pH medium by Lebedev *et al.* (1986). This interpretation is consistent with the high level of F_0 in the damaged tissue, due to the lack of photochemical activity. Further experiments are necessary to determine whether the distinct fluorescence signature of high F_0 and low F_v occurs in other ripening fruit skins and whether it is due to acid induced damage to the reaction centres.

In summary, our results prove that Chl fluorescence imaging can be used to distinguish between healthy and damaged or infected lemon skins after harvest. Furthermore, the technique can identify areas of damage

before they can be seen by visual inspection. We suggest that the high contrast between the fluorescence signatures of healthy and infected lemon peel can be used to develop an automated post-harvest fruit sorter.

References

Allen, K.D., Staehelin, L.A.: Biochemical characterization of photosystem II antenna polypeptides in grana and stroma membranes of spinach. - *Plant Physiol.* **100**: 1517-1526, 1992.

Anderson, J.M., Waldron, J.C., Thore, S.W.: Chlorophyll-protein complexes of spinach and barley thylakoids. Spectral characterization of six complexes resolved by an improved electrophoretic procedure. - *FEBS Lett.* **92**: 227-233, 1978.

Baker, N.R., East, T.M., Long, S.P.: Chilling damage to photosynthesis in young *Zea mays*. II. Photochemical function of thylakoids *in vivo*. - *J. exp. Bot.* **34**: 189-197, 1983.

Balachandran, S., Osmond, C.B., Daley, P.F.: Diagnosis of the earliest strain-specific interactions between tobacco mosaic virus and chloroplasts of tobacco leaves *in vivo* by means of chlorophyll fluorescence imaging. - *Plant Physiol.* **104**: 1059-1065, 1994.

Balota, M., Lichtenthaler, H.K.: Red chlorophyll fluorescence as an ecophysiological method to assess the behaviour of wheat genotypes under drought and heat. - *Cereal Res. Commun.* **27**: 179-187, 1999.

Beaudry, R.M., Armstrong, P.R., Song, J., Deng, W.: Non-destructive method and apparatus for detection of fruit and vegetable quality. - US Patent 5,822,068, 1998.

Berg, D., Maier, K., Otteken, D., Terjung, F.: Picosecond fluorescence decay studies on water-stressed pea leaves: energy transfer and quenching processes in photosystem 2. - *Photosynthetica* **34**: 97-106, 1997.

Blackwell, J.R., Gilmour, D.J.: Physiological response of the unicellular green alga *Chlorococcum subarinum* to rapid changes in salinity. - *Arch. Microbiol.* **157**: 86-91, 1991.

Bolh  r-Nordenkampf, H.R., Lechner, E.G.: Winter stress and chlorophyll fluorescence in Norway spruce (*Picea abies*, L., Karst.). - In: Lichtenthaler, H.K. (ed.): Applications of Chlorophyll Fluorescence. Pp. 173-180. Kluwer Academic Publ., Dordrecht - Boston - London 1988.

Bose, S.: Chlorophyll fluorescence in green plants and energy transfer pathways in photosynthesis. - *Photochem. Photobiol.* **36**: 725-731, 1982.

Bowyer, W.J., Ning, L., Daley, L.S., Strobel, G.A., Edwards, G.E., Callis, J.B.: *In vivo* fluorescence imaging for detection of damage to leaves by fungal phytotoxins. - *Spectroscopy* **13**: 36, 1998.

Briantais, J.-M., Dacosta, J., Goulas, Y., Ducruet, J.-M., Moya, I.: Heat stress induces in leaves an increase of the minimum level of chlorophyll fluorescence, F_0 : A time-resolved analysis. - *Photosynth. Res.* **48**: 189-196, 1996.

Bro, E., Meyer, S., Genty, B.: Heterogeneity of leaf CO_2 assimilation during photosynthetic induction. - In: Mathis, P. (ed.): Photosynthesis: from Light to Biosphere. Vol. V. Pp. 607-610. Kluwer Academic Publishers, Dordrecht - Boston - London 1995.

Brown, G.K., Sarig, Y.: Non-destructive Technologies for Quality Evaluation of Fruits and Vegetables. - Pp. 120-147. Amer. Soc. Agr. Eng., St.Joseph 1994.

Carter, G.A., Miller, R.L.: Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands. - *Remote Sens. Environ.* **50**: 295-302, 1994.

Cerovic, Z.G., Goulas, Y., Gorbunov, M., Briantais, J.-M., Camenen, L., Moya, I.: Fluorosensing of water in plants - diurnal changes of the mean lifetime and yield of chlorophyll fluorescence, measured simultaneously and at distance with a tau-LIDAR and a modified PAM-fluorimeter, in maize, sugar beet, and *Kalanchoe*. - *Remote Sens. Environ.* **58**: 311-321, 1996.

Chakir, S., Jensen, M.: How does *Lobaria pulmonaria* regulate photosystem II during progressive desiccation and osmotic water stress? A chlorophyll fluorescence study at room temperature and at 77 K. - *Physiol. Plant.* **105**: 257-265, 1999.

Csintalan, Z., Proctor, M.C.F., Tuba, Z.: Chlorophyll fluorescence during drying and rehydration in the mosses *Rhytidadelphus loreus* (Hedw.) Warnst., *Anomodon viticulosus* (Hedw.) Hook. & Tayl. and *Grimmia pulvinata* (Hedw.) Sm. - *Ann. Bot.* **84**: 235-244, 1999.

Daley, P.F.: Chlorophyll fluorescence analysis and imaging in plant stress and disease. - *Can. J. Plant Pathol.* **17**: 167-173, 1995.

Daley, P.F., Raschke, K., Ball, J.T., Berry, J.A.: Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence. - *Plant Physiol.* **90**: 1233-1238, 1989.

Darr, S.C., Arntzen, C.J.: Reconstitution of the light harvesting chlorophyll *a/b* pigment-protein complex into developing chloroplast membranes using a dialyzable detergent. - *Plant Physiol.* **80**: 931-937, 1986.

Dau, H.: Molecular mechanisms and quantitative models of variable photosystem II fluorescence. - *Photochem. Photobiol.* **60**: 1-23, 1994.

DeEll, J.R., Prange, R.K., Murr, D.P.: Chlorophyll fluorescence as a potential indicator of controlled-atmosphere disorders in 'Marshall' McIntosh apples. - *HortScience* **30**: 1084-1085, 1995.

Duysens, L.N.M., Sweers, H.E.: Mechanism of two photochemical reactions in algae as studied by means of fluorescence. - In: Studies on Microalgae and Photosynthetic Bacteria. Pp. 353-372. University of Tokyo Press, Tokyo 1963.

Endo, T., Schreiber, U., Asada, K.: Suppression of quantum yield of photosystem II by hyperosmotic stress in *Chlamydomonas reinhardtii*. - *Plant Cell Physiol.* **36**: 1253-1258, 1995.

Gandul-Rojas, B., Cepero, M.R.L., M  nguez-Mosquera, M.I.: Chlorophyll and carotenoid patterns in olive fruits, *Olea europaea* cv. Arbequina. - *J. agr. Food Chem.* **47**: 2207-2212, 1999.

Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron

transport and quenching of chlorophyll fluorescence. – *Biochim. biophys. Acta* **990**: 87-92, 1989.

Genty, B., Meyer, S.: Quantitative mapping of leaf photosynthesis using chlorophyll fluorescence imaging. – *Aust. J. Plant Physiol.* **22**: 277-284, 1994.

Gilmore, A.M., Govindjee: How higher plants respond to excess light: Energy dissipation in photosystem II. – In: Singhal, G.S., Renger, G., Irrgang, K.-D., Govindjee (ed.): *Concepts in Photobiology: Photosynthesis and Photomorphogenesis*. Pp. 513-548. Narosa Publishers, Delhi – Madras – Bombay – Calcutta – London; Kluwer Academic Publ., Boston – Dordrecht – London 1999.

Govindjee: Sixty-three years since Kautsky: Chlorophyll *a* fluorescence. – *Aust. J. Plant Physiol.* **22**: 131-160, 1995.

Gross, J., Flugel, M.: Pigment changes in peel of the ripening banana (*Musa cavendishi*). – *Gartenbauwissenschaft* **47**: 62-64, 1982.

Havaux, M.: Stress tolerance of photosystem II *in vivo*. Antagonistic effects of water, heat, and photoinhibition stresses. – *Plant Physiol.* **100**: 424-432, 1992.

Havaux, M., Lannoye, R.: Effects of chilling temperatures on prompt and delayed chlorophyll fluorescence in maize and barley leaves. – *Photosynthetica* **18**: 117-127, 1984.

Heisel, F., Sowinska, M., Miché, J.A., Lang, M., Lichtenhaller, H.K.: Detection of nutrient deficiencies of maize by laser induced fluorescence imaging. – *J. Plant Physiol.* **148**: 622-631, 1996.

Jagtap, V., Bhargava, S., Streb, P., Feierabend, J.: Comparative effect of water, heat and light stresses on photosynthetic reactions in *Sorghum bicolor* (L.) Moench. – *J. exp. Bot.* **49**: 1715-1721, 1998.

Jefferies, R.A.: Drought and chlorophyll fluorescence in field-grown potato (*Solanum tuberosum*). – *Physiol. Plant.* **90**: 93-97, 1994.

Jimenez, M.S., Gonzalez-Rodriguez, A.M., Morales, D., Cid, M.C., Socorro, A.R., Caballero, M.: Evaluation of chlorophyll fluorescence as a tool for salt stress detection in roses. – *Photosynthetica* **33**: 291-301, 1997.

Krause, G.H.: Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. – *Physiol. Plant.* **74**: 566-574, 1988.

Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: The basics. – *Annu. Rev. Plant Physiol. Plant mol. Biol.* **42**: 313-349, 1991.

Lang, M., Lichtenhaller, H.K., Sowinska, M., Heisel, F., Miehé, J.A.: Fluorescence imaging of water and temperature stress in plant leaves. – *J. Plant Physiol.* **148**: 613-621, 1996.

Lebedev, N.N., Šiffel, P., Pakshina, E.V., Krasnovskii, A.A.: The effect of acidification on absorption and fluorescence spectra of French bean chloroplasts and the kinetics of pheophytin formation. – *Photosynthetica* **20**: 124-130, 1986.

Lorenzini, G., Guidi, L., Nali, C., Soldatini, G.F.: Quenching analysis in poplar clones exposed to ozone. – *Tree Physiol.* **19**: 607-612, 1999.

Malkin, S., Kok, B.: Fluorescence induction studies in isolated chloroplast. I. Number of components involved in the reaction and quantum yields. – *Biochim. biophys. Acta* **126**: 413-432, 1966.

Merzlyak, M.N., Gitelson, A.A., Pogosyan, S.I., Lekhimena, L., Chivkunova, O.B.: Light-induced pigment degradation in leaves and ripening fruits studied *in situ* with reflectance spectroscopy. – *Physiol. Plant.* **104**: 661-667, 1998.

Meyer, S., Genty, B.: Mapping intercellular CO₂ mole fraction (Ci) in *Rosa rubiginosa* leaves fed with abscisic acid by using chlorophyll fluorescence imaging. Significance of Ci estimated from leaf gas exchange. – *Plant Physiol.* **116**: 947-957, 1998.

Mínguez-Mosquera, M.I., Gallardo-Guerrero, L.: Disappearance of chlorophylls and carotenoids during the ripening of the olive. – *J. Sci. Food Agr.* **69**: 1-6, 1995.

Mínguez-Mosquera, M.I., Hornero-Méndez, D.: Formation and transformation of pigments during the fruit ripening of *Capsicum annuum* cv. Bola and Agridulce. – *J. Agr. Food Chem.* **42**: 38-44, 1994.

Mott, K.A., Cardon, Z.G., Berry, J.A.: Asymmetric patchy stomatal closure for the two surfaces of *Xanthium strumarium* L. leaves at low humidity. – *Plant Cell Environ.* **16**: 25-34, 1993.

Murata, N., Satoh, K.: Absorption and fluorescence emission by intact cells, chloroplasts, and chlorophyll-protein complexes. – In: Govindjee, Amesz, J., Fork, D.C. (ed.): *Light Emission by Plants and Bacteria*. Pp. 137-159. Academic Press, Orlando – San Diego – New York – Austin – Boston – London – Sydney – Tokyo – Toronto 1986.

Nauš, J., Kuropatwa, R., Klinkovský, T., Ilík, P., Lattová, J., Pavlová, Z.: Heat injury of barley leaves detected by the chlorophyll fluorescence temperature curve. – *Biochim. biophys. Acta* **1101**: 359-362, 1992.

Nedbal, L., Masojídek, J., Komenda, J., Prášil, O., Šetlík, I.: Three types of photosystem II photoactivation. 2. Slow processes. – *Photosynth. Res.* **24**: 89-97, 1990.

Nedbal, L., Soukupová, J., Kaftan, D., Whitmarsh, J., Trtílek, M.: Kinetic imaging of chlorophyll fluorescence using modulated light. – *Photosynth. Res.* **38**: in press, 2000.

Ning, L., Edwards, G.E., Strobel, G.A., Daley, L.S., Callis, J.B.: Imaging fluorometer to detect pathological change in plants. – *Appl. Spectrosc.* **49**: 1381-1389, 1995.

Niyogi, K.K., Björkman, O., Grossman, A.R.: *Chlamydomonas* xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. – *Plant Cell* **9**: 1369-1380, 1997.

Niyogi, K.K., Grossman, A.R., Björkman, O.: *Arabidopsis* mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. – *Plant Cell* **10**: 1121-1134, 1998.

Osmond, C.B., Kramer, D., Lütte, U.: Reversible, water stress-induced non-uniform chlorophyll fluorescence quenching in wilting leaves of *Potentilla reptans* may not be due to patchy stomatal responses. – *Plant Biol.* **1**: 618-624, 1999.

Oxborough, K., Baker, N.R.: An instrument capable of imaging chlorophyll *a* fluorescence from intact leaves at very low irradiance and at cellular and subcellular levels of organization. – *Plant Cell Environ.* **20**: 1473-1483, 1997a.

Oxborough, K., Baker, N.R.: Resolving chlorophyll *a* fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components – Calculation of *qP* and *Fv'/Fm'* without measuring *Fo'*. – *Photosynth. Res.* **54**: 135-142, 1997b.

Peterson, R.B., Aylor, D.E.: Chlorophyll fluorescence induction in leaves of *Phaseolus vulgaris* infected with bean rust (*Uromyces appendiculatus*). – *Plant Physiol.* **108**: 163-171, 1995.

Raschke, K., Patzke, J., Daley, P.F., Berry, J.A.: Spatial and temporal heterogeneities of photosynthesis detected through analysis of chlorophyll-fluorescence images of leaves. – In: Baltscheffsky, M. (ed.): *Current Research in Photosynthesis*.

Vol. IV. Pp. 573-578. Kluwer Academic Publ., Dordrecht – Boston – London 1990.

Roggero, J.P., Coen, S., Ragonnet, B.: High-performance liquid-chromatography survey on changes in pigment content in ripening grapes of syrah – an approach to anthocyanin metabolism. – Amer. J. Enol. Viticolt. **37**: 77-83, 1986.

Satoh, K.: F-695 emission from the purified photosystem II chlorophyll α -protein complex. – FEBS Lett. **110**: 53-56, 1980.

Satoh, K., Butler, W.L.: Low temperature spectral properties of subchloroplasts fraction purified from spinach. – Plant Physiol. **61**: 373-379, 1978.

Scholes, J.D., Rolfe, S.A.: Photosynthesis in localized regions of oat leaves infected with crown rust (*Puccinia coronata*) – Quantitative imaging of chlorophyll fluorescence. – Planta **199**: 573-582, 1996.

Schreiber, U., Schliwa, U., Bilger, W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. – Photosynth. Res. **10**: 51-62, 1986.

Seaton, G.G.R., Hurry, V.M., Rohozinski, J.: Novel amplification of non-photochemical chlorophyll fluorescence quenching following viral infection in *Chlorella*. – FEBS Lett. **389**: 319-323, 1996.

Siebke, K., Weis, E.: Imaging of chlorophyll- α -fluorescence in leaves: Topography of photosynthetic oscillations in leaves of *Glechoma hederacea*. – Photosynth. Res. **45**: 225-237, 1995.

Siefermann-Harms, D., Ninnemann, H.: Differences in acid stability of the chlorophyll-protein complexes in intact thylakoids. – Photobiochem. Photobiophys. **6**: 85-91, 1983.

Strand, M., Öquist, G.: Inhibition of photosynthesis by freezing temperatures and high light levels in cold-acclimated seedlings of Scots pine (*Pinus sylvestris*). I. Effects on the light-limited and light-saturated rates of CO_2 assimilation. – Physiol. Plant. **64**: 425-430, 1985.

Tuba, Z.: The changes of the photosynthetic pigment system of two paprika (red pepper) varieties from the fully developed vegetative stage to the ripening of the fruit. – Bot. Közlem. **68**: 123-131, 1981.

Yerkes, C.T., Kramer, D.M., Fenton, J.M., Crofts, A.R.: UV-photoinhibition: Studies *in vitro* and in intact plants. – In: Baltscheffsky, M. (ed.): Current Research in Photosynthesis. Vol. II. Pp. 381-384. Kluwer Academic Publ., Dordrecht – Boston – London 1990.