

## Photosynthetic characteristics of chloroplasts of primary wheat leaves grown under different irradiance

Rajendra K. BEHERA and Nakul K. CHOUDHURY\*

*School of Life Sciences, Sambalpur University, Jyotivihar - 768 019, Sambalpur, India*

### Abstract

The rate of accumulation of total chlorophyll (Chl) and carotenoids (Car) of leaves grown under high irradiance, HI ( $30$  and  $45 \text{ W m}^{-2}$ ) was faster than at moderate irradiance, MI ( $15 \text{ W m}^{-2}$ ). However, the senescence phase started earlier in the samples and proceeded at a faster rate. Chl  $a/b$  and Chl  $(a+b)/\text{Car}$  values showed faster loss of Chl  $a$  (compared to Chl  $b$ ) and Chl  $(a+b)$  (compared to Car) in HI leaves. Protein accumulation and loss were also similar to that of Chl  $(a+b)$  content. Increase in Chl fluorescence during the development phase may suggest a gradual change in thylakoid organisation, however, the temporal kinetics were different in HI and MI samples. Increase in fluorescence polarisation during senescence of HI leaves compared to the control (MI) suggests conversion of thylakoid membranes to gel phase. Chloroplasts prepared from HI seedlings showed higher rate of photochemical activities, however, the activity declined earlier and at faster rate compared to the control.

*Additional key words:* carotenoids; chlorophyll fluorescence; Hill activity; leaf ageing; membrane polarisation; senescence; *Triticum aestivum*; wheat.

### Introduction

Variation in radiation quality and duration or irradiance cause significant change in pattern of leaf growth and senescence. Leaves of high irradiance (HI) grown plants differ in morphology, composition, and photosynthetic characters from the low irradiance (LI) ones (e.g., Lichtenhaller 1981, Lichtenhaller *et al.* 1981). HI leaves have small leaf size, high dry mass, low water content, and high Chl  $a/b$  ratio. Their development is much faster than that of leaves of LI plants. HI leaves possess sun-type chloroplasts that are adapted for a higher photosynthetic quantum conversion than leaves of moderate irradiance (MI) or LI plants (Meier and Lichtenhaller 1981, Lichtenhaller *et al.* 1984, Čajánek *et al.* 1999).

HI causes injury to photosynthetic apparatus. Sun plants grow better at HI than at LI (Powles 1984, Demmig-Adams and Adams 1992, Björkman and

Demmig-Adams 1993). Transfer of sun plant growing in LI to HI results in an upward shift of photosynthesis to accommodate and utilise the increased supply of radiant energy.

Carotenoids (Car) are accessory pigments in photosynthesis. The other important function of Car is photo-protection of Chl against photooxidative degradation (Demmig-Adams 1990, Gilmore 1997, Anderson *et al.* 1997). In contrast to wild type organisms having normal pigment composition, mutants lacking Car suffer serious photooxidative damage, often resulting in death. This suggests photoprotective role of Car in plants under irradiance stress.

The objective of this work was to study the effect of irradiance on pigment composition and photosynthetic characters of chloroplasts of plants grown under HI.

### Materials and methods

Wheat (*Triticum aestivum* L. var. Sonalika) seedlings were grown in a culture room on sterilised cotton in Petri dishes at  $25\pm2$  °C under continuous "white light" at irradiances of  $15 \text{ W m}^{-2}$  (MI),  $30 \text{ W m}^{-2}$  (HI-1), and

$45 \text{ W m}^{-2}$  (HI-2). Primary leaves were harvested at 24-h intervals for various experiments. Pigments were extracted in 80 % chilled acetone.

The amounts of Chl  $(a+b)$  and Car were estimated

*Received 3 May 2000, accepted 8 November 2000.*

\*Author for correspondence; fax: (0663) 430158, e-mail: rajubb7@hotmail.com

*Abbreviations:* Car – carotenoids; Chl – chlorophyll; DCPIP - 2,6-dichlorophenol indophenol; HI – high irradiance; LHCP - light-harvesting chlorophyll-protein; LI – low irradiance; MI – moderate irradiance; PFD - photon flux density.

*Acknowledgement:* We thank DST, New Delhi for financial support in the form of research project.

spectrophotometrically according to Lichtenthaler (1987). The sodium chloride soluble proteins of leaves were estimated by Coomassie brilliant blue G-250 method as described by Bradford (1976). Bovine serum albumin was used as standard.

About 25 leaves were homogenised in pre-chilled mortar and pestle with ice-cold isolation medium. The isolation medium contained 0.4 M sucrose, 0.01 M EDTA-Na, and 0.1 M phosphate buffer (pH 7.8). After homogenisation, the homogenate was squeezed through cheesecloth and the filtrate was centrifuged at 500×g for 1 min. The supernatant was again centrifuged at 1000×g for 10 min. The pellet containing chloroplasts was collected in a small volume of homogenising medium.

The room temperature Chl fluorescence emission of chloroplasts was measured by a spectrofluorometer (Hitachi, model 650-40) following Swain *et al.* (1990).

## Results

In the leaves of seedlings grown in HI-2, Chl accumulated faster and also declined earlier compared to HI-1 and MI leaves (Fig. 1). The steady-state period

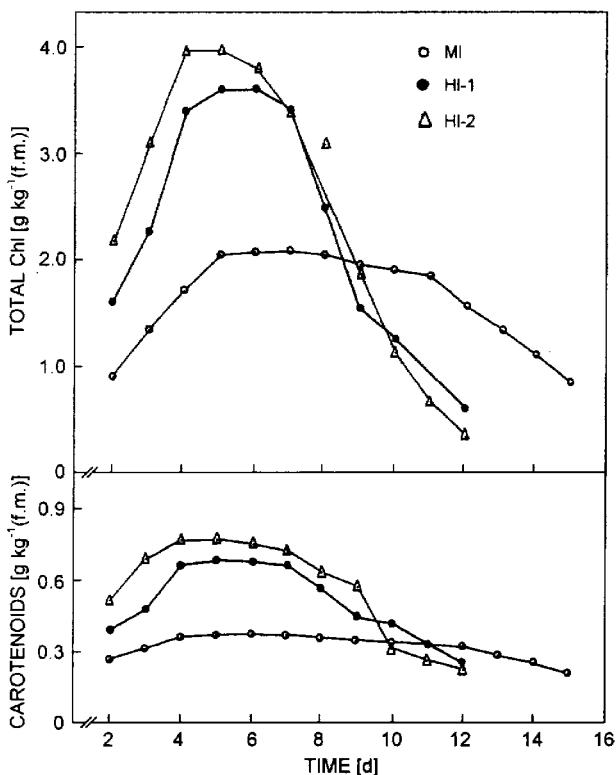



Fig. 1. Contents of chlorophyll (Chl) ( $a+b$ ) and carotenoids of primary leaves of wheat seedlings grown in laboratory under different irradiances.

(maximum pigment concentration) remained longer in MI plants compared to HI-1 and HI-2 plants. However, the

The samples were excited at 450 nm and emission was recorded at 685 and 735 nm. Chloroplasts equivalent to 10  $\mu\text{g}$  Chl in 3  $\text{cm}^3$  of suspension medium were taken for all experiments. For measuring the fluorescence polarisation, the chloroplast suspension was excited at 620 nm and polarisation (P) was recorded at 685 nm. P was calculated using the formula of Swain *et al.* (1990) with modification.

The 2,6-dichlorophenol indophenol (DCPIP) photo-reduction by isolated chloroplasts was measured spectrophotometrically as described by Swain *et al.* (1990). The 3  $\text{cm}^3$  of reaction mixture contained chloroplasts equivalent to 15  $\mu\text{g}$  of Chl, 15  $\mu\text{M}$  DCPIP, 100 mM KCl, 0.1 mM MgSO<sub>4</sub>, and 10 mM Na-phosphate buffer (pH 6.8). The incident radiation beam was passed through a water filter to minimise infrared radiation. The photoreduction of the dye was measured at 600 nm.

Table 1. The chlorophyll (Chl)  $a/b$  and Chl ( $a+b$ )/carotenoids (Car) ratios of primary wheat leaves of seedlings grown under moderate (MI) and high (HI-1 and HI-2) irradiances. Exceptionally, mature leaves of MI plants were analysed on the 7<sup>th</sup> d.

|                   | Stage            | MI  | HI-1 | HI-2 |
|-------------------|------------------|-----|------|------|
| Chl $a/b$         | Young (2 d)      | 2.2 | 2.5  | 3.0  |
|                   | Mature (5 d)     | 1.9 | 2.2  | 2.3  |
|                   | Senescent (12 d) | 1.8 | 1.7  | 1.5  |
| Chl ( $a+b$ )/Car | Young (2 d)      | 2.3 | 3.9  | 4.2  |
|                   | Mature (5 d)     | 5.7 | 5.2  | 5.1  |
|                   | Senescent (12 d) | 4.8 | 2.3  | 1.4  |

steady state was reached one day earlier in HI-2 plants. The rate of decline in MI (control) from 8 d was much slower compared to HI-1 and HI-2. Plants grown under HI-2 showed a higher content of Car compared to the plants grown under HI-1 and MI. Loss of Car started from 5 and 6 d in the seedlings grown under HI-2 and HI-1, respectively. Car amount declined rapidly in HI-2 samples compared to HI-1 and MI.

During the maturity of leaves (5<sup>th</sup> day), the Chl  $a/b$  ratio was 1.9 in MI, 2.2 in HI-1, and 2.3 in HI-2 seedlings (Table 1). However, the ratios declined to 1.8, 1.7, and 1.5 in the MI, HI-1, and HI-2 leaves, respectively, during the senescence phase (12 d). The Chl/Car ratios (Table 1) during mature stage of primary leaves were around 5.0 in HI leaves compared to 5.7 in MI leaves. The ratio declined much faster in HI samples than in the MI ones, reaching 2.3 in HI-1 and 1.4 in HI-2. Thus the degradation of Chl in HI plants was relatively faster than in the MI ones.

The protein content in HI-2 sample was low compared to control (MI) and HI-1 (Fig. 2). Contrary to the slower rate of loss of the macromolecule from 5 d

onward in HI-2, the rate of loss was much faster in the control (from 7 d) and HI-1 (from 5 d) samples.

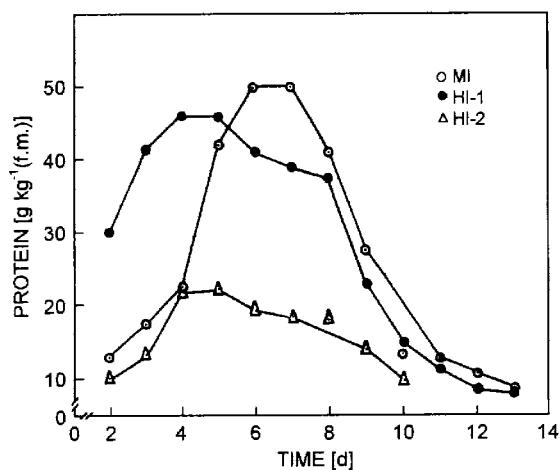



Fig. 2. Protein content of primary leaves of wheat seedlings grown in laboratory under different irradiances.

Table 2. Room temperature chlorophyll (Chl) fluorescence intensity of chloroplasts isolated from primary leaves of wheat seedlings grown under moderate (MI) and high (HI-1 and HI-2) irradiances. The samples were excited at 450 nm. For other details, see Materials and methods.

|      | Time [d] | $F_{685}$ | $F_{735}$ | $F_{685}/F_{735}$ |
|------|----------|-----------|-----------|-------------------|
| MI   | 3        | 26.66     | 3.76      | 7.09              |
|      | 5        | 36.77     | 5.10      | 7.21              |
|      | 7        | 51.89     | 7.01      | 7.40              |
|      | 9        | 56.37     | 7.38      | 7.63              |
|      | 11       | 60.86     | 7.75      | 7.85              |
|      | 13       | 51.23     | 6.08      | 8.40              |
|      | 15       | 48.15     | 5.75      | 8.37              |
| HI-1 | 3        | 51.15     | 6.65      | 7.69              |
|      | 5        | 58.14     | 8.05      | 7.22              |
|      | 7        | 65.62     | 8.08      | 8.12              |
|      | 9        | 73.57     | 7.25      | 10.14             |
|      | 11       | 45.46     | 4.17      | 10.90             |
|      | 13       | 30.30     | 3.49      | 8.69              |
|      |          |           |           |                   |
| HI-2 | 3        | 62.23     | 7.30      | 8.66              |
|      | 5        | 68.01     | 7.85      | 8.66              |
|      | 7        | 72.80     | 8.40      | 8.66              |
|      | 9        | 68.94     | 8.83      | 10.09             |
|      | 11       | 64.74     | 6.12      | 10.59             |

As concerns Chl fluorescence of leaves of seedlings grown under different irradiance (Table 2), a gradual increase in  $F_{685}$  continued up to 11 d in MI, to 9 d in HI-1, and to 7 d in HI-2 seedlings followed always by a decline. Similar trends of increase and decrease were also noted in  $F_{735}$  values in control sample. However, the decline in the intensity of  $F_{735}$  started from 7 d in HI-1

and HI-2 samples. The ratio ( $F_{685}/F_{735}$ ) in MI leaves increased throughout seedling growth except for 13 d. On the other hand, the ratios in HI-1 and HI-2 plants oscillated in a similar extent.

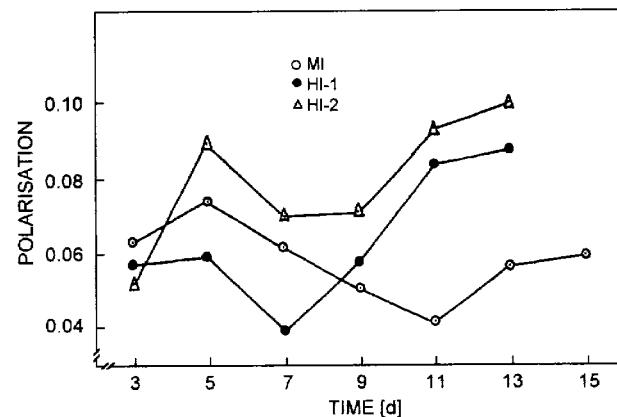



Fig. 3. Membrane polarisation of chloroplasts isolated from the primary leaves of wheat seedlings grown in laboratory under different irradiances. The samples were excited at 620 nm and the emission was recorded at 685 nm.

A triphasic kinetic of changes in polarisation was observed in all the three samples (Fig. 3). It increased initially for 48 h, declined rapidly, and was followed by a new increase. However, except the initial (3 d) value, polarisation of chloroplasts of HI-2 plants was higher than in HI-1 and MI samples during the entire period of seedling growth.

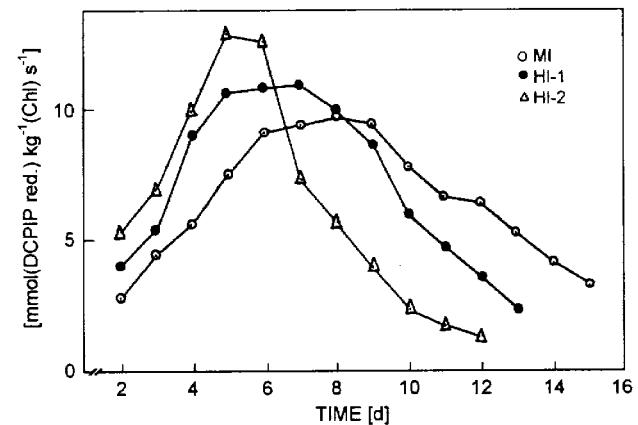



Fig. 4. DCPIP-photoreduction of chloroplasts isolated from primary leaves of wheat seedlings grown in laboratory under different irradiances.

Hill DCPIP activity of chloroplasts isolated from HI-1 and HI-2 leaves was higher and the peak activity was reached earlier (Fig. 4) than in the control (MI). The activity declined after 6, 7, and 9 d in HI-2, HI-1, and MI, respectively. The kinetics of Hill activity matched with total Chl content (Fig. 1) of all types of seedlings.

## Discussion

The developmental status of an organ (such as an expanding leaf) is given by its pigment and protein contents and the photochemical activities that increase with age and remain stable (mature stage) followed by decline (senescence). Pigment analyses of primary wheat leaves grown under MI, HI-1, and HI-2 (Fig. 1) suggest that HI causes faster rates of accumulation and loss of Chl (Lichtenthaler *et al.* 1981, 1982, 1984). There was also difference in pigment composition in the leaves as indicated from the pigment ratios (Table 1). The higher Chl *a/b* ratio during mature stage in HI leaves indicates low LHC content in chloroplasts (Prenzel *et al.* 1980). On the other hand, low Chl (*a+b*)/Car ratio suggested relatively more Car in the leaves. Since more photons are available for the HI plants, the leaves have adapted to HI by having less light-harvesting (Chl-*b*) and more photo-protecting (Car) pigments (Table 1).

One of the causes of early loss of Chl in HI-1 and HI-2 is the photooxidation of pigments (Powles 1984). Excess irradiance causes formation of various reactive oxygen species through triplet Chl (Young 1991) and due to impaired electron transport in chloroplasts (Alischer *et al.* 1997, Biswal and Biswal 1999). These highly reactive substances are responsible for faster degradation of Chl. The rates of accumulation and loss of Car were also faster in the HI-1 and HI-2 samples. At HI, Cars are synthesised at a higher rate in the leaves (Bilger and Björkman 1990, Schindler *et al.* 1994). This is a strategic adaptation of plants: if plants are subsequently exposed to HI, the Car protect them from the irradiance stress (Choudhury *et al.* 1993, 1994, Gilmore 1997, Minkov *et al.* 1999). As the yellow pigment gets itself degraded on quenching the harmful triplet Chl and reactive oxygen species formed under excess irradiance (Panda and Biswal 1989, Choudhury and Choe 1996), the loss was more in HI-1 and HI-2 compared to control.

HI plants contain less protein (Arntzen 1978). One of the reasons of this is lower amount of LHCP in HI leaves (Meier and Lichtenthaler 1981, Lichtenthaler *et al.* 1982). The low content of proteins in the HI-2 sample (Fig. 3) could also be due to high rate of breakdown caused by photon stimulation of protease activity (Andersson and

Aro 1997, Paulsen 1997).

Information on coupling of photon absorption and photochemical reactions is obtained by monitoring fluorescence characteristics of chloroplasts (Krause and Weis 1991). A gradual increase in Chl fluorescence ( $F_{685}$ ) intensity during seedling growth (Table 2) suggests changes in thylakoid organisation. However, the differential increase in the ratio  $F_{685}/F_{735}$  in MI and HI-1 samples may suggest a different temporal kinetics of development of the two photosystems. On the other hand, the ratio in HI-2 plants remained stable up to 7 d suggesting similar kinetics of structural development of the two photosystems during leaf growth.

Sharp increase in fluorescence polarisation (Fig. 3) particularly during the senescence suggests an ageing-induced conversion of thylakoid membrane to gel phase (Panda and Biswal 1989, Behera and Choudhury 1997). This may hinder charge separation in the Chl molecules leading to decline in photochemistry of chloroplasts (Fig. 4). Polarisation increased more in HI-1 and HI-2 plants than in the control. This may also suggest uncoupling of LHC and reaction centre of photosystems resulting in low photochemistry during senescence of leaves (Swain *et al.* 1990, Behera and Choudhury 1997).

The DCPIP photoreduction activity of isolated chloroplasts reflects the photochemical potential of PS2. During leaf development, the highest pigment contents coincide with the maximum photochemical activity of chloroplasts. Chloroplasts isolated from MI, HI-1, and HI-2 leaves showed highest Hill activity (Fig. 4) which coincided with the maximum Chl content (Fig. 1). The decline in photochemistry also coincided with the loss in pigment contents. The high rate of photochemistry in HI-1 and HI-2 samples could not be maintained for longer period as observed in the control and declined sooner because of loss of pigments as well as HI induced changes in the microenvironment of thylakoid membrane. These observations suggest that wheat seedlings grown under different irradiances have different leaf pigment composition and photochemical potential of the chloroplasts.

## References

Alischer, R.G., Donahue, J.L., Cramer, C.L.: Reactive oxygen species and antioxidants: relationships in green cells. – *Physiol. Plant.* **100**: 224-233, 1997.

Anderson, J.M., Park, Y.-I., Chow, S.W.: Photoinactivation and photoprotection of photosystem II in nature. – *Physiol. Plant.* **100**: 214-223, 1997.

Andersson, B., Aro, E.-M.: Proteolytic activities and protease of plant chloroplasts. – *Physiol. Plant.* **100**: 780-793, 1997.

Arntzen, C.J.: Dynamic structural features of chloroplast lamellae. – In: Sanadi, D.R., Vernon, L.P. (ed.): *Current Topics in Bioenergetics*. Vol. 8. Pp. 111-160. Academic Press, New York – San Francisco – London 1978.

Behera, L.M., Choudhury, N.K.: Changes in the chlorophyll fluorescence characteristics of chloroplasts from intact pumpkin cotyledons, caused by organ excision and kinetin treatment. – *Photosynthetica* **34**: 161-168, 1997.

Bilger, W., Björkman, O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced

absorbance changes, fluorescence and photosynthesis in leaves of *Hedera canariensis*. – *Photosynth. Res.* **25**: 173-185, 1990.

Biswal, B., Biswal, U.C.: Photosynthesis under stress: Stress signals and adaptive response of chloroplasts. – In: Pessarakli, M. (ed.): *Handbook of Plant and Crop Stress*. 2<sup>nd</sup> Ed. Pp. 315-336. Marcel Dekker, New York 1999.

Björkman, O., Demmig-Adams, B.: Regulation of photosynthetic light energy capture, conversion and dissipation in leaves of higher plants. – In: Schulze, E.D., Caldwell, M.N. (ed.): *Ecological Studies*. Vol. **100**. Pp. 14-47. – Springer-Verlag, New York 1993.

Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. – *Anal. Biochem.* **72**: 248-254, 1976.

Čajánek, M., Hudcová, M., Kalina, J., Lachetová, I., Špunda, V.: Gradual disassembly of photosystem 2 *in vivo* induced by excess irradiance. A hypothesis based on changes in 77 K fluorescence spectra of chlorophyll *a* in barley leaves. – *Photosynthetica* **37**: 295-306, 1999.

Choudhury, N.K., Aslam, M., Huffaker, R.C.: Photochemical activities in wheat chloroplasts incubated under irradiation and possible photoprotection by zeaxanthin. – *Photosynthetica* **30**: 397-405, 1994.

Choudhury, N.K., Choe, H.T.: Photoprotective effect of kinetin on pigment content and photochemical activities of wheat chloroplasts aging *in vitro*. – *Biol. Plant.* **38**: 61-69, 1996.

Choudhury, N.K., Swain, N.K., Raval, M.K., Biswal, U.C.: Stability of chlorophyll, carotenoids and protein of thylakoid membranes during *in vitro* aging of chloroplasts. – *Photosynthetica* **29**: 631-634, 1993.

Demmig-Adams, B.: Carotenoids and photoprotection in plants: A role of the xanthophyll zeaxanthin. – *Biochim. biophys. Acta* **1020**: 1-24, 1990.

Demmig-Adams, B., Adams, W.W., III: Photoprotection and other responses of plants to high light stress. – *Annu. Rev. Plant Physiol. Plant mol. Biol.* **43**: 599-626, 1992.

Gilmore, A.M.: Mechanistic aspect of xanthophyll cycle dependent photoprotection in higher plant chloroplasts and leaves. – *Physiol. Plant.* **99**: 197-209, 1997.

Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: the basics. – *Annu. Rev. Plant Physiol. Plant mol. Biol.* **42**: 313-349, 1991.

Lichtenthaler, H.K.: Adaptation of leaves and chloroplasts to high quanta fluence rates. – In: Akoyunoglou, G. (ed.): *Photosynthesis*. Vol. VI. Pp. 273-287. Balaban Int. Sci. Service, Philadelphia 1981.

Lichtenthaler, H.K.: Chlorophylls and carotenoids – pigments of photosynthetic membranes. – In: Colowick, S.P., Kaplan, N.O. (ed.): *Methods in Enzymology*. Vol. **48**. Pp. 350-382. Academic Press, San Diego – New York – Berkeley – Boston – London – Sydney – Tokyo – Toronto 1987.

Lichtenthaler, H.K., Buschmann, C., Döll, M., Fietz, H.-J., Bach, T., Kozel, U., Meier, D., Rahmsdorf, U.: Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. – *Photosynth. Res.* **2**: 115-141, 1981.

Lichtenthaler, H.K., Kuhn, G., Prenzel, U., Meier, D.: Chlorophyll-protein levels and degree of thylakoid stacking in radish chloroplasts from high-light, low-light and bentazon-treated plants. – *Physiol. Plant.* **56**: 183-188, 1982.

Lichtenthaler, H.K., Meier, D., Buschmann, C.: Development of chloroplasts at high and low light quanta fluence rates. – *Isr. J. Bot.* **33**: 185-194, 1984.

Meier, D., Lichtenthaler, H.K.: Ultrastructural development of chloroplasts in radish seedlings grown at high- and low-light conditions and in the presence of the herbicide bentazon. – *Protoplasma* **107**: 195-207, 1981.

Minkov, I.N., Jahouhjan, G.T., Denev, I.D., Toneva, V.T.: Photooxidative stress in higher plants. – In: Pessarakli, M. (ed.): *Handbook of Plant and Crop Stress*. 2<sup>nd</sup> Ed. Pp. 449-525. Marcel Dekker, New York – Basel 1999.

Panda, S., Biswal, U.C.: Aging induced changes in thylakoid membrane organization and photoinhibition of pigments. – *Photosynthetica* **23**: 507-516, 1989.

Paulsen, H.: Pigment ligation to proteins of the photosynthetic apparatus in higher plants. – *Physiol. Plant.* **100**: 760-768, 1997.

Powles, S.B.: Photoinhibition of photosynthesis induced by visible light. – *Annu. Rev. Plant Physiol.* **35**: 15-44, 1984.

Prenzel, U., Lichtenthaler, H.K., Meier, D.: Level of chlorophyll *b* and the light harvesting chlorophyll-protein complex in *Rapheanus* seedlings grown at different light quanta fluence rates. – In: Mazaliak, P., Benveniste, P., Costes, C., Douce, R. (ed.): *Recent Advances in the Biogenesis and Function of Plant Lipids*. Pp. 369-372. Elsevier, Amsterdam 1980.

Schindler, C., Reith, P., Lichtenthaler, H.K.: Differential levels of carotenoids and decrease of zeaxanthin cycle performance during leaf development in a green and an aurea variety of tobacco. – *J. Plant Physiol.* **143**: 590-597, 1994.

Swain, N.K., Raval, M.K., Choudhury, N.K., Biswal, U.C.: Differential changes in fluorescence characteristics in photosystem 2 rich grana fraction during aging in light and dark. – *Photosynthetica* **24**: 135-142, 1990.

Young, A.J.: The photoprotective role of carotenoids in higher plants. – *Physiol. Plant.* **83**: 702-708, 1991.