

# Gas exchange responses to $\text{CO}_2$ concentration instantaneously elevated in flag leaves of winter wheat cultivars released in different years

H.Q. LIU<sup>\*,\*\*</sup> G.M. JIANG<sup>\*,†</sup>, Q.D. ZHANG<sup>\*\*</sup>, J.Z. SUN<sup>\*\*\*</sup>, R.J. GUO<sup>\*\*\*</sup>, L.M. GAO<sup>\*</sup>, K.Z. BAI<sup>\*\*</sup>, and T.Y. KUANG<sup>\*\*</sup>

*Laboratory of Quantitative Vegetation Ecology, Institute of Botany, The Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, 10093, Beijing, P.R. China<sup>\*</sup>*

*Laboratory of Basic Research on Photosynthesis, Institute of Botany, The Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, 10093, Beijing, P.R. China<sup>\*\*</sup>*

*Institute of Crop Science, Beijing Academy of Agroforestry, 10089, Beijing, P.R. China<sup>\*\*\*</sup>*

## Abstract

Three winter wheat (*Triticum aestivum* L.) cultivars, representatives of those widely cultivated in Beijing over the past six decades, were grown in the same environmental conditions. Net photosynthetic rate ( $P_N$ ) per unit leaf area and instantaneous water use efficiency (WUE) of flag leaves increased with elevated  $\text{CO}_2$  concentration. With an increase in  $\text{CO}_2$  concentration from 360 to 720  $\mu\text{mol mol}^{-1}$ ,  $P_N$  and WUE of Jingdong 8 (released in 1990s and having the highest yield) increased by 173 and 81 %, while those of Nongda 139 (released in 1970s) increased by 88 and 66 %, and Yanda 1817 (released in 1945, with lowest yield) by 76 and 65 %. Jingdong 8 had the highest  $P_N$  and WUE values under high  $\text{CO}_2$  concentration, but Yanda 1817 showed the lowest  $P_N$ . Stomatal conductance ( $g_s$ ) of Nongda 139 and Yanda 1817 declined with increasing  $\text{CO}_2$  concentration, but  $g_s$  of Jingdong 8 firstly went down and then up as the  $\text{CO}_2$  concentration further increased. Intercellular  $\text{CO}_2$  concentration ( $C_i$ ) of Jingdong 8 and Nongda 139 increased when  $\text{CO}_2$  concentration elevated, while that of Yanda 139 increased at the first stage and then declined. Jingdong 8 had the lowest  $C_i$  of the three wheat cultivars, and Yanda 1817 had the highest  $C_i$  value under lower  $\text{CO}_2$  concentrations. However, Jingdong 8 had the highest  $P_N$  and lowest  $C_i$  at the highest  $\text{CO}_2$  concentration which indicates that its photosynthetic potential may be high.

*Additional key words:*  $C_i$ ;  $C_i/C_a$ ; net photosynthetic rate; stomatal conductance; water use efficiency; transpiration rate.

## Introduction

Photosynthetic rate of most of  $C_3$  plants increases with the increase in  $\text{CO}_2$  concentration, while that of  $C_4$  plants levels off (Akita and Moss 1973, Kimball 1983, Cure and Acock 1986, Ehleringer *et al.* 1991, Nie *et al.* 1992, Alberto *et al.* 1996, Chen *et al.* 1996, Poorter *et al.* 1996). The increased  $\text{CO}_2$  uptake in  $C_3$  plants is primarily due to the fact that the increased substrate concentration at the active site of the primary carboxylase, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), suppresses photorespiration (Bowes 1996, Drake *et al.* 1997). However, the effect of  $\text{CO}_2$  concentration enrichment varies highly among  $C_3$  species (Jones *et al.* 1984, Rowland-Bamford *et al.* 1991) and even among different cultivars of the same crop (Ramachandra Reddy *et al.* 1993, Reddy *et al.* 1997). Several studies with wheat showed an incre-

ment in biomass and yield of about 10–20 % under  $\text{CO}_2$  enrichment (Havelka *et al.* 1984, Mitchell *et al.* 1993, McKee and Woodward 1994, Tuba *et al.* 1994, Weigel *et al.* 1994). This is much less than in many other crop species (30~40 %: Kimball 1983, Poorter 1993). The average  $\text{CO}_2$ -related increments in biomass and grain yield differ much between old and modern spring wheat (*Triticum aestivum* L.) cultivars (Manderscheid and Weigel 1997, Jiang *et al.* 2000).

Although there have been many investigations on the response of photosynthesis to the elevated  $\text{CO}_2$  in high plants, the response of different winter wheat cultivars that were released in different years was seldom reported. Therefore we selected three winter wheat cultivars with different photosynthetic characteristics and yield, repre-

Received 28 January 2002, accepted 3 June 2002.

<sup>\*</sup>Corresponding author: fax: (+8610) 62590843; e-mail: jgm@ht.rol.cn.net

*Abbreviations:*  $C_a$  – ambient  $\text{CO}_2$  concentration;  $C_i$  – intercellular  $\text{CO}_2$  concentration;  $E$  – transpiration rate;  $g_s$  – stomatal conductance;  $P_i$  – phosphoric acid;  $P_N$  – net photosynthetic rate; PPDF – photosynthetic photon flux density; RuBP – ribulose-1,5-bisphosphate; RuBPCO – ribulose-1,5-bisphosphate carboxylase; WUE – instantaneous water use efficiency.

*Acknowledgements:* This is a special support project of the State key Basic Research and Development Plan (G1998010100).

sentatives of those widely cultivated in Beijing over the passed six decades, and investigated their gas exchange response to  $\text{CO}_2$  concentration increase in the field. The

## Materials and methods

**Plants:** Three winter cultivars of *T. aestivum*, representatives of those widely cultivated in Beijing over the passed six decades (Table 1), were Yanda 1817 (released in 1940's), Nongda 139 (released in 1970's), and Jingdong 8 (released in 1990's). The experiment was done in the Experiment Farmland of Beijing Academy of Agro-forestry ( $39^{\circ}09'N$ ,  $116^{\circ}04'E$ ) in 2000-2001. The major elements of soil were: total nitrogen (N) 0.171 %, available N  $57.6 \text{ mg kg}^{-1}$ , available P  $85.1 \text{ mg kg}^{-1}$ , and K  $110.0 \text{ mg kg}^{-1}$ . All the cultivars received the same agricultural management, such as watering, fertilising, and

Table 1. List of representative cultivars of winter wheat released in different eras of the last century, with grain yield records, increase rates, grain yield, biomass, and harvest index.

| Cultivar                          | Yanda 1817 | Nongda 139 | Jingdong 8 |
|-----------------------------------|------------|------------|------------|
| Released in the year              | 1945       | 1983       | 1995       |
| Yield [ $\text{g m}^{-2}$ ]       | 65         | 275        | 583        |
| Increase in yield [%]             | -          | 323        | 797        |
| Grain yield [ $\text{g m}^{-2}$ ] | 420        | 448        | 546        |
| Biomass [ $\text{g m}^{-2}$ ]     | 1233       | 1111       | 1192       |
| Harvest index                     | 0.34       | 0.40       | 0.45       |

pesticides. All growing environments were similar to those in the agriculture fields of Beijing area, North China. The low yield cultivars are always taller, which makes them easy to fall down. Wood stick supports ( $100 \times 250 \times 40 \text{ cm}$ , height  $\times$  length  $\times$  depth) were used to prevent lodging, in order that the ultimate yield potential could be reached. With the help of such simple constructions, the low yield cultivars had successfully finished their development stages without lodging.

**Gas exchange:** Two separate  $4000 \text{ cm}^3$  steel bottles

## Results

**Response of  $P_N$  to  $\text{CO}_2$  concentration:**  $P_N$  in flag leaves of all three wheat cultivars increased with  $\text{CO}_2$  concentration (Fig. 1A). The promotion of  $P_N$  of Jingdong 8 was larger (by 173 %) than that of the other two cultivars, Nongda 139 and Yanda 1817 (88 and 76 % increment, respectively, at  $C_{720}$ ). For Jingdong 8 the  $P_N$  vs.  $\text{CO}_2$  concentration dependence was exponential, indicating that  $\text{CO}_2$  saturation of  $P_N$  lied much higher than  $720 \text{ } \mu\text{mol mol}^{-1}$ . However,  $P_N$  of the other wheat cultivars increased more slowly as the  $\text{CO}_2$  concentration increased. Thus  $P_N$  of Yanda 1817 was maximal at  $C_{720}$ . At  $C_{360}$ ,  $P_N$  of Jingdong 8 was slightly lower but at higher  $\text{CO}_2$  concentrations much higher than that of the other two cultivars.

question was how photosynthesis acclimates to elevated  $\text{CO}_2$  concentration and how it varies in hereditarily improved wheat cultivars.

(9.5 MPa) containing 0 or  $1000 \text{ } \mu\text{mol}(\text{CO}_2) \text{ mol}^{-1}$  were ordered from *Beijing AP Beifen Gas Industry Co.* The oxygen concentration of both bottles was 21 %, using  $\text{N}_2$  as buffer gas. Mixing the two kinds of gases in different proportions produced five  $\text{CO}_2$  concentrations, which were put into five plastic bags ( $10000 \text{ cm}^3$ ). The  $\text{CO}_2$  concentration in each bag was measured by an *LCA-4* portable photosynthesis system (*ADC*, Hoddesdon, UK).  $\text{CO}_2$  concentrations of 360, 500, 570, 650, and  $720 \text{ } \mu\text{mol mol}^{-1}$  (mentioned here as  $C_{360}$ ,  $C_{500}$ ,  $C_{570}$ ,  $C_{650}$ , and  $C_{720}$ ) were produced and applied to the selected cultivars.

For measurements at the beginning of May, fully developed flag leaves in middle to upper crown were used. We chose as clear and windless days as possible.  $P_N$ , transpiration rate ( $E$ ),  $C_i$ , and  $g_s$  were measured under different  $\text{CO}_2$  concentrations using the *LCA-4* system. WUE was calculated as  $P_N/E$ . We firstly linked the bag full of gas of needed  $\text{CO}_2$  concentration with the gas input aperture of the *LCA-4*. When the  $\text{CO}_2$  concentration was stable, we started to measure gas exchange. Three replications were made on each cultivar in different location of the field, and five data sets of each measurement were recorded. All plants were harvested at the maturity and the grain yield was determined.

**Data analysis:** The large data set was entered into an *Excel* spread sheet, which included cultivars, time, physiological measurements, leaf areas, and sites. Analysis of variance of leaf traits was carried out on each measurement and the significance of cultivars mean square determined by testing against the error (cultivars  $\times$  replicate) mean square. Then all results of analysis were entered into *Sigmaplot* to create the graph. The primary data set was copied into a *SPSS* sheet to make correlation analysis.

$P_N$  of Yanda 1817 was the lowest under all the  $\text{CO}_2$  concentrations.

**Response of  $E$  to  $\text{CO}_2$  concentration:**  $E$  in flag leaves slightly increased with increase in  $\text{CO}_2$  concentration (Fig. 1B). Nongda 139 had the highest  $E$  of all three cultivars, while Jingdong 8 maintained the lowest  $E$  under  $C_{360}$  to  $C_{500}$ . In Jingdong 8,  $E$  went up quickly and became the highest at  $C_{720}$  (a 50 % increase between  $C_{500}$  and  $C_{720}$ ). This was consistent with the response of  $g_s$  to  $\text{CO}_2$  concentration (Fig. 1C).  $E$  of Yanda 1817 increased slightly with the increase in  $\text{CO}_2$  concentration, but  $E$  of Nongda 139 fluctuated at increased  $\text{CO}_2$  concentrations.

**Response of  $g_s$  to CO<sub>2</sub> concentration:**  $g_s$  in flag leaves of wheat tended to decline with increase in CO<sub>2</sub> concentration, especially in Yanda 1817 at C<sub>720</sub> (Fig. 1C). Nongda 139 had the highest  $g_s$  values of the three cultivars within the range C<sub>360</sub> to C<sub>570</sub>. However, Jingdong 8

had the highest  $g_s$  value at C<sub>720</sub> because it went up starting with C<sub>500</sub>, while  $g_s$  of the other two cultivars went down. Under higher CO<sub>2</sub> concentrations, a sharp increase in P<sub>N</sub> in leaf of Jingdong 8 was related to increase in  $g_s$  ( $p < 0.01$ , Table 2).

Table 2. Pearson correlation analysis of physiological variables and CO<sub>2</sub> concentration. \*\*\*Correlation is significant at the 0.001 level (2-tailed) ( $n = 149$ ). \*\*Correlation is significant at the 0.01 level (2-tailed).

|                                | Ca    | E         | $g_s$      | $P_N$     | Ci        | WUE        | Ci/Ca      |
|--------------------------------|-------|-----------|------------|-----------|-----------|------------|------------|
| C <sub>a</sub>                 | 1.000 | 0.493 *** | -0.488 *** | 0.878 *** | 0.508 *** | 0.864 ***  | -0.575 *** |
| E                              |       | 1.000     | 0.268 ***  | 0.666 *** | 0.414 *** | 0.263 ***  | -0.102     |
| $g_s$                          |       |           | 1.000      | -0.214 ** | 0.100     | -0.465 *** | 0.650 ***  |
| P <sub>N</sub>                 |       |           |            | 01.000    | 0.289 *** | 0.889 ***  | -0.649 *** |
| C <sub>i</sub>                 |       |           |            |           | 1.000     | 0.151      | 0.395 ***  |
| WUE                            |       |           |            |           |           | 1.000      | -0.780 *** |
| C <sub>i</sub> /C <sub>a</sub> |       |           |            |           |           |            | 1.000      |

**Response of WUE to CO<sub>2</sub> concentration:** WUE of all the three wheat cultivars went up as the CO<sub>2</sub> concentration increased (Fig. 1D). WUE of Jingdong 8 was the highest, and the difference in WUE between Yanda 1817 and Nongda 139 was small and inconsistent. WUE of Yanda 1817 was mostly higher than that of Nongda 139.

and 65 %, respectively. Thus Jingdong 8 can use water very economically under high CO<sub>2</sub> concentrations.

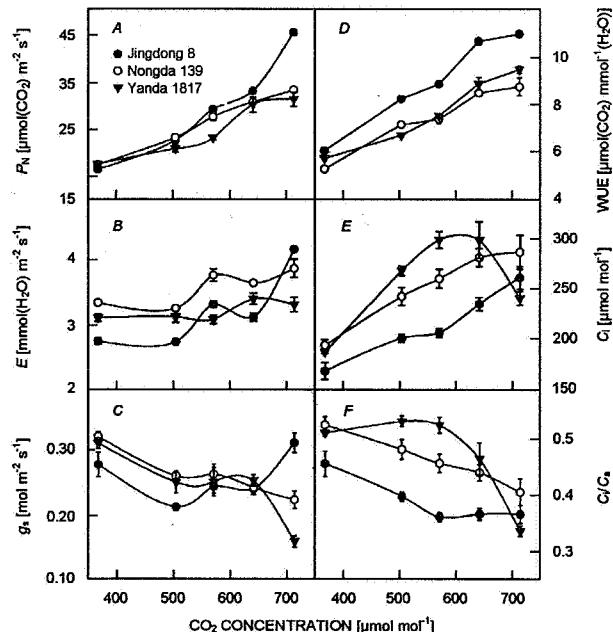



Fig. 1. Responses of gas exchange parameters [A – net photosynthetic rate (P<sub>N</sub>), B – transpiration rate (E), C – stomatal conductance ( $g_s$ ), D – instantaneous water use efficiency (WUE), E – intercellular CO<sub>2</sub> concentration (C<sub>i</sub>), F – ratio of C<sub>i</sub> to ambient CO<sub>2</sub> concentration (C<sub>i</sub>/C<sub>a</sub>)] in flag leaves of three wheat cultivars to elevated CO<sub>2</sub> concentration. Means  $\pm$  SE,  $n = 15$ .

Jingdong 8 had a higher WUE due to high P<sub>N</sub> and low E, it improved its WUE by 81 % in the range C<sub>360</sub> to C<sub>720</sub>, while Nongda 139 and Yanda 1817 increased theirs by 66

and 65 %, respectively. Thus Jingdong 8 can use water very economically under high CO<sub>2</sub> concentrations.

**Response of C<sub>i</sub> to CO<sub>2</sub> concentration changes:** C<sub>i</sub> also increased with increase in CO<sub>2</sub> concentration (Fig. 1E). Among the three cultivars, Jingdong 8 had the lowest C<sub>i</sub>, while Yanda 1817 had the highest one. C<sub>i</sub> of Jingdong 8 increased by 55.0 % when CO<sub>2</sub> concentration changed from C<sub>360</sub> to C<sub>720</sub>, but that of Nongda 139 increased by 47.7 %. In Yanda 1817 the increase was by 59.8 % in the range C<sub>360</sub> to C<sub>570</sub>, followed by a rapid decline in the range C<sub>650</sub> to C<sub>720</sub>. However, the former two cultivars increased their C<sub>i</sub> values linearly with the increase in CO<sub>2</sub> concentration. Thus, the lower P<sub>N</sub> in flag leaves of Yanda 1817 might be caused by the lower ability of RuBPCO for assimilation instead of the lower  $g_s$ . On the contrary, because of the lower ability of RuBPCO, Yanda 1817 could consume less CO<sub>2</sub> under high CO<sub>2</sub> concentration, thereby C<sub>i</sub> of Yanda 1817 was increased quickly which led to a sharp decrease in  $g_s$ . P<sub>N</sub> in leaves of Jingdong 8 increased rapidly as the CO<sub>2</sub> concentration was elevated and low C<sub>i</sub> was kept. Therefore,  $g_s$  in leaves of Jingdong 8 increased with the increase in CO<sub>2</sub> concentration.

**Response of C<sub>i</sub>/C<sub>a</sub> to CO<sub>2</sub> concentration:** This ratio declined in the three wheat cultivars with increase in CO<sub>2</sub> concentration (Fig. 1F). However, there were big differences in the shape of curves of CO<sub>2</sub> concentration vs. C<sub>i</sub>/C<sub>a</sub> of the three wheat cultivars: C<sub>i</sub>/C<sub>a</sub> of Yanda 1817 increased slightly within C<sub>360</sub> to C<sub>570</sub>, then decreased much when CO<sub>2</sub> concentration further increased. C<sub>i</sub>/C<sub>a</sub> of Nongda 139 went down linearly with CO<sub>2</sub> concentration, while that of Jingdong 8 declined rapidly in the range C<sub>360</sub> to C<sub>570</sub>, then it increased slightly when the CO<sub>2</sub> concentration further increased. Jingdong 8 had the lowest C<sub>i</sub>/C<sub>a</sub> values of the three cultivars, and Nongda 139 had the highest ones. However, the decline in C<sub>i</sub>/C<sub>a</sub> of Nongda 139 was caused by low  $g_s$  (Table 2, Fig. 1C).

while that of Jingdong 8 by sharp increase in  $P_N$ .

**Correlations of physiological variables and  $\text{CO}_2$  concentrations:** Almost all of the Pearson corrections among  $C_a$ ,  $P_N$ ,  $E$ ,  $g_s$ ,  $C_i$ , WUE, and  $C_i/C_a$  (Table 2) were significant. Thus  $E$ ,  $P_N$ ,  $C_i$ , and WUE were positively correlated with  $C_a$  ( $p<0.001$ ),  $g_s$  and  $C_i/C_a$  were negatively corre-

lated with  $C_a$  ( $p<0.001$ ).  $g_s$ ,  $P_N$ ,  $C_i$ , and WUE were negatively correlated with  $P_N$  and WUE ( $p<0.001$ ), and positively correlated with  $C_i/C_a$  ( $p<0.001$ ).  $P_N$  was significantly positively correlated with  $C_i$  and WUE, and negatively correlated with  $C_i/C_a$  ( $p<0.001$ ).  $C_i/C_a$  was negatively correlated with WUE, and positively correlated with  $C_i$  ( $p<0.001$ ).

## Discussion

Different cultivars of the same crop respond often differently (Ramachandra Reddy *et al.* 1993, Mandersheid and Weigel 1997, Reddy *et al.* 1997) to  $\text{CO}_2$  concentration. We found that  $P_N$  of the three wheat cultivars increased as the  $\text{CO}_2$  concentration was elevated.  $P_N$  of Jingdong 8 increased much more than that of the other two cultivars, which suggested that photosynthesis in leaves of modern winter wheat cultivars adapts better to  $\text{CO}_2$  concentration than the older ones. This is inconsistent with the result of Mandersheid and Weigel (1997) who believe that the result of  $\text{CO}_2$  enrichment is larger growth stimulation in the old spring wheat cultivars than in the modern ones. Different environment may cause this difference. Our experiments were carried out in fertile soil in an open field, but in their study wheat was planted in small pots which may restrict  $P_N$  under high  $\text{CO}_2$  concentration. Wall *et al.* (2000) suggest that  $\text{CO}_2$  enrichment increases the daily integral of net leaf carbon accumulation by 30 % at high N, but only by 23 % at low N. Modern wheat cultivars acclimate to well fertilised soil, while the old ones need only much less fertiliser. For example, in our experiment the old wheat cultivars would lodge under well-irrigated and fertilised conditions if we would not protect them. Short-term elevation of atmospheric  $\text{CO}_2$  concentration can stimulate carbon gain in  $C_3$  plants because of increased substrate availability for the primary carboxylase, RuBPCO (Long and Drake 1991, 1992, Sage 1994, Van Oosten and Besford 1994, Woodrow 1994, Webber *et al.* 1995) and suppressed photorespiration (Sharkey 1988). Ramachandra Reddy and Gnanam (2000) considered that the observed increase in  $P_N$  was a result of elevated  $\text{CO}_2$  concentration, attributed to reduction in photorespiration, which represents a significant loss (25 %) of previously fixed carbon in all  $C_3$  plant. However, in our experiments  $P_N$  increased between  $C_{360}$  and  $C_{720}$  by as much as 76 % in Yanda 1817 and by 173 % in Jingdong 8. Therefore we suggest some other mechanism of photosynthetic response to elevated  $\text{CO}_2$ , especially to instantaneous  $\text{CO}_2$  enrichment, because reduction in photorespiration alone may not lead to such great increment of  $P_N$ . The mechanism has to be further investigated.

Stomata partly close in response to elevated  $\text{CO}_2$  (Mott 1990) which lowers  $g_s$  (Jones and Mansfield 1970, Farquhar *et al.* 1978, Morison and Gifford 1984, Morison 1985, Knapp *et al.* 1994, Adam *et al.* 2000) and leads to reduced  $E$  (Pallas 1965, Kimball and Idso 1983, Cure and Acock 1986, Tuba *et al.* 1994). However, in our study  $g_s$

of Yanda 1817 and Nongda 139 went down, but that of Jingdong 8 firstly went down and then went up again when  $\text{CO}_2$  concentration was raised.  $E$  also increased as  $\text{CO}_2$  concentration was elevated. This phenomenon might be related to irradiance increase at the latter measured time. In this experiment, we measured gas exchange under natural irradiation in the field, with the low  $\text{CO}_2$  being applied earlier than the higher ones. Both the irradiance and temperature were increased while we measured gas exchange under high  $\text{CO}_2$ , which might affect  $g_s$  and  $E$ , and saturating PPDF might be increased too. Moreover, high  $\text{CO}_2$  might not decrease  $g_s$  (Field *et al.* 1995). Anyway, stomata acclimation to high  $\text{CO}_2$  concentration may be found in Jingdong 8 under some environmental conditions. Because we measured always under saturating PPDF,  $P_N$  might be changed only little by irradiance. The curve of  $P_N$  changes in leaves of Jingdong 8 was different from that for other cultivars, which was similar to an exponential curve instead of a logarithmic one. It indicated that the saturating  $\text{CO}_2$  concentration was far beyond the concentrations that we used, or the saturating irradiance became higher under high  $\text{CO}_2$  concentrations. Sionit *et al.* (1982) suggest that plants grow more quickly under high  $\text{CO}_2$  and high irradiance than under only one of them. Photosynthesis is usually limited by one of the three general processes: (1) The capacity of RuBPCO to consume RuBP in  $\text{CO}_2$  fixation. (2) The capacity of thylakoid reactions to supply ATP and NADPH for RuBP regeneration. (3) The capacity of starch and sucrose synthesis to utilise triose photophosphorylation (Farquhar *et al.* 1980, Shakey 1985, Harley and Shakey 1991). Under saturating irradiance, RuBPCO capacity limits  $P_N$  at low  $C_i$ , RuBP regeneration is the limiting factor at intermediate  $C_i$ , but  $P_i$  regeneration becomes a limiting one at high  $C_i$ .  $P_N$  of Jingdong 8 increased sharply with  $\text{CO}_2$  concentration, which indicated that potential of photosynthesis was high. Thereby, it could consume more  $\text{CO}_2$  under high  $\text{CO}_2$  concentration than the other two cultivars, and slowed down the speed of  $C_i$  increase as  $C_a$  was elevated. So it could maintain lower  $C_i$  but higher  $g_s$ , because stomata were sensitive to  $C_i$  and not sensitive to  $C_a$  if  $C_i$  exerted little change (Mott 1988).

In conclusion,  $P_N$  and WUE in flag leaves of Jingdong 8 increased more quickly than those in the other two wheat cultivars, and Jingdong 8 maintained a higher  $g_s$  and lower  $C_i$  as  $C_a$  increased. We consider that the photosynthetic potential ability of Jingdong 8 is much higher

than that of the other two cultivars. In other words, some photosynthetic characteristics were improved during the improvement process of wheat cultivars over the past six

decades. Jingdong 8 might act much better than Nongda 139 and Yanda 1817 under higher CO<sub>2</sub> concentration when global change occurs.

## References

Adam, N.R., Owensby, C.E., Ham, J.M.: The effect of CO<sub>2</sub> enrichment on leaf photosynthetic rates and instantaneous water use efficiency of *Andropogon gerardii* in the tallgrass prairie. – *Photosynth. Res.* **65**: 121-129, 2000.

Akita, S., Moss, D.N.: Differential stomatal response between C<sub>3</sub> and C<sub>4</sub> species to atmospheric CO<sub>2</sub> concentration and light. – *Crop Sci.* **12**: 789-793, 1973.

Alberto, A.M., Ziska, L.H., Cervancia, C.R., Mahalo, P.A.: The influence of increasing carbon dioxide and temperature on competitive interactions between a C<sub>3</sub> crop, rice (*Oryza sativa*) and a C<sub>4</sub> weed (*Echinochloa glabrescens*). – *Aust. J. Plant Physiol.* **23**: 795-805, 1996.

Bowes, G.: Photosynthetic responses to changing atmospheric carbon dioxide concentrations. – In: Baker, N.A. (ed.): *Photosynthesis and the Environment*. Pp. 387-407. Kluwer Academic Publ., Dordrecht 1996.

Chen, D.X., Hunt, H.W., Morgan, J.A.: Responses of a C<sub>3</sub> and C<sub>4</sub> perennial grass to CO<sub>2</sub> enrichment and climate change. Comparison between model predictions and experimental data. – *Ecol. Model.* **87**: 11-27, 1996.

Cure, J.D., Acock, B.: Crop responses to carbon dioxide doubling: a literature survey. – *Agr. Forest Meteorol.* **38**: 127-145, 1986.

Drake, B.G., González-Meler, M.A., Long, S.P.: More efficient plants: A consequence of rising atmospheric CO<sub>2</sub>? – *Annu. Rev. Plant Physiol. Plant mol. Biol.* **48**: 609-639, 1997.

Ehleringer, J.R., Sage, R.F., Flanagan, L.B., Pearcy, R.W.: Climate change and the evalution of C<sub>4</sub> photosynthesis. – *Trends Ecol. Evol.* **6**: 95-99, 1991.

Farquhar, G.D., Caemmerer, S. von, Berry, J.A.: A biochemical model of photosynthetic CO<sub>2</sub> assimilation in leaves of C<sub>3</sub> species. – *Planta* **149**: 78-90, 1980.

Farquhar, G.D., Dubbe, D.R., Raschke, K.: Gain of the feedback loop involving carbon dioxide and stomata. The theory and measurement. – *Plant Physiol.* **62**: 406-412, 1978.

Field, C.B., Jackson, R.B., Mooney, H.A.: Stomatal responses to increased CO<sub>2</sub>: implications from the plant to the global scale. – *Plant Cell Environ.* **18**: 1214-1225, 1995.

Harley, P.C., Sharkey, T.D.: An improved model of C<sub>3</sub> photosynthesis at high CO<sub>2</sub>: Reversed O<sub>2</sub> sensitivity explained by lack of glycerate reentry into the chloroplast. – *Photosynth. Res.* **27**: 169-178, 1991.

Havelka, U.D., Wittenbach, V.A., Boyle, M.G.: CO<sub>2</sub>-enrichment effects on wheat yield and physiology. – *Crop Sci.* **24**: 1163-1168, 1984.

Jiang, G.M., Hao, N.B., Bai, K.Z., Zhang, Q.D., Sun, J.Z., Guo, R.J., Ge, Q.Y., Kuang, T.Y.: Chain correlation between variables of gas exchange and yield potential in different winter wheat cultivars. – *Photosynthetica* **38**: 227-232, 2000.

Jones, P., Allen, L.H., Jr., Jones, J.W., Boote, K.J., Campbell, W.J.: Soybean canopy growth, photosynthesis and transpiration responses to whole season carbon dioxide enrichment. – *Agron. J.* **76**: 633-637, 1984.

Jones, R.J., Mansfield, T.A.: Increases in the diffusion resistances of leaves in a carbon dioxide-enriched atmosphere. – *J. exp. Bot.* **21**: 951-958, 1970.

Kimball, B.A.: Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. – *Agron. J.* **75**: 779-788, 1983.

Kimball, B.A., Idso, S.B.: Increasing atmospheric CO<sub>2</sub>: effects on crop yield, water use and climate. – *Agr. Water Manage.* **7**: 55-72, 1983.

Knapp, A.K., Cocke, M., Hamerlynck, E.P., Owensby, C.E.: Effect of elevated CO<sub>2</sub> on stomatal density and distribution in a C<sub>4</sub> grass and a C<sub>3</sub> forb under field conditions. – *Ann. Bot.* **47**: 595-599, 1994.

Long, S.P., Drake, B.G.: Effect of the long-term elevated CO<sub>2</sub> concentration in the field on the quantum yield of photosynthesis of the C<sub>3</sub> sedge, *Scirpus olneyi*. – *Plant Physiol.* **96**: 221-226, 1991.

Long, S.P., Drake, B.G.: Photosynthetic CO<sub>2</sub> assimilation and rising atmospheric CO<sub>2</sub> concentration. – In: Baker, N.R., Thomas, H. (ed.): *Crop Photosynthesis: Spatial and Temporal Determinants*. Pp. 69-103. Elsevier Science Publ., Amsterdam 1992.

Manderscheid, R., Weigel, H.J.: Photosynthetic and growth responses of old and modern spring wheat cultivars to atmospheric CO<sub>2</sub> enrichment. – *Agr. Ecosystems Environ.* **64**: 65-73, 1997.

McKee, I.F., Woodward, F.I.: CO<sub>2</sub> enrichment responses of wheat: Interactions with temperature, nitrate and phosphate. – *New Phytol.* **127**: 447-453, 1994.

Mitchell, R.A.C., Michell, V.J., Driscoll, S.P., Franklin, J., Lawlor, D.W.: Effects of increased CO<sub>2</sub> concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application. – *Plant Cell Environ.* **16**: 521-529, 1993.

Morison, J.I.L.: Sensitivity of stomata and water use efficiency to high CO<sub>2</sub>. – *Plant Cell Environ.* **8**: 467-474, 1985.

Morison, J.I.L., Gifford, R.M.: Plant growth and water use with limited water supply in high CO<sub>2</sub> concentrations. I. Leaf area, water use and transpiration. – *Aust. J. Plant Physiol.* **11**: 361-374, 1984.

Mott, K.A.: Do stomata respond to CO<sub>2</sub> concentrations other than intercellular? – *Plant Physiol.* **86**: 200-203, 1988.

Mott, K.A.: Sensing of atmospheric CO<sub>2</sub> by plants. – *Plant Cell Environ.* **13**: 731-737, 1990.

Nie, D., He, H., Kirkham, M.B., Kanemasu, E.T.: Photosynthesis of a C<sub>3</sub> grass and a C<sub>4</sub> grass under elevated CO<sub>2</sub>. – *Photosynthetica* **26**: 189-198, 1992.

Pallas, J.E.: Transpiration and stomatal opening with changes in carbon dioxide content of the air. – *Science* **147**: 171-173, 1965.

Poorter, H.: Interspecific variation in the growth reponse of plants to an elevated ambient CO<sub>2</sub> concentration. – *Vegetatio* **104/105**: 77-97, 1993.

Poorter, H., Roumet, C., Campbell, B.D.: Interspecific variation on the growth response of plants to elevated CO<sub>2</sub>: a search for functional types. – In: Körner, C., Bazzaz, F. (ed.): *Carbon Dioxide, Populations, and Communities*. Pp. 375-412. Academic Press, New York 1996.

Ramachandra Reddy, A., Gnanam, A.: Photosynthetic produc-

tivity prospects under CO<sub>2</sub>-enriched atmosphere of the 21<sup>st</sup> century. – In: Yunus, M., Pathre, U., Mohanty, P. (ed.): Probing Photosynthesis. Pp. 342-363. Taylor & Francis, London – New York 2000.

Ramachandra Reddy, A., Reddy, K.R., McKinion, J.M., Hodges, H.F.: CO<sub>2</sub> enrichment and temperature effects on the carbon assimilation and transpiration in cotton leaves. – *Plant Growth Regul.* **26**: 33-40, 1993.

Reddy, K.R., Hodges, H.F., McKinion, J.M.: Crop modeling and applications: a cotton example. – *Adv. Agron.* **59**: 225-293, 1997.

Rowland-Bamford, A.J., Baker, J.T., Allen, L.H., Jr., Bowes, G.: Acclimation of rice to changing atmospheric carbon dioxide concentration. – *Plant Cell Environ.* **14**: 577-583, 1991.

Sage, R.F.: Acclimation of photosynthesis to increasing atmospheric CO<sub>2</sub>: The gas exchange perspective. – *Photosynth. Res.* **39**: 351-368, 1994.

Sharkey, T.D.: Estimating the rate of photorespiration in leaves. – *Physiol. Plant.* **73**: 147-152, 1988.

Sharkey, T.D.: Photosynthesis in intact leaves of C<sub>3</sub> plants: physics, physiology and rate limitations. – *Bot. Rev.* **51**: 53-105, 1985.

Sionit, N., Hellmers, H., Strain, B.R.: Interaction of atmospheric CO<sub>2</sub> enrichment and irradiance on plant growth. – *Agron. J.* **74**: 721-725, 1982.

Tuba, Z., Szente, K., Koch, J.: Response of photosynthesis, stomatal conductance, water use efficiency, and production to long-term elevated CO<sub>2</sub> in winter wheat. – *J. Plant Physiol.* **144**: 661-668, 1994.

Van Oosten, J.-J., Besford, R.T.: Sugar feeding mimics effect of acclimation to high CO<sub>2</sub> – rapid down regulation of RuBisCO small subunit transcripts but not of the large subunit transcripts. – *J. Plant Physiol.* **143**: 306-312, 1994.

Wall, G.W., Adam, N.R., Brooks, T.J., Kimball, B.A., Pinter, P.J., Jr., LaMorte, R.L., Adamsen, F.J., Hunsaker, D.J., Wechsung, G., Wechsung, F., Grossman-Clarke, S., Leavitt, S.W., Matthias, A.D., Webber, A.N.: Acclimation response of spring wheat in a free-air CO<sub>2</sub> enrichment (FACE) atmosphere with variable soil nitrogen regimes. 2. Net assimilation and stomatal conductance of leaves. – *Photosynth. Res.* **66**: 79-95, 2000.

Webber, A.N., Nie, G.-Y., Long, S.P.: Acclimation of photosynthetic proteins to rising atmospheric CO<sub>2</sub>. – *Photosynth. Res.* **39**: 413-425, 1995.

Weigel, H.J., Manderscheid, R., Jäger, H.J., Mejer, G.J.: Effects of season-long CO<sub>2</sub> enrichment on cereals. 1. Growth performance and yield. – *Agr. Ecosystems Environ.* **48**: 231-240, 1994.

Woodrow, I.E.: Optimal acclimation of C<sub>3</sub> photosynthetic system under elevated CO<sub>2</sub>. – *Photosynth. Res.* **39**: 401-413, 1994.