

# Modelling net photosynthetic rate of winter wheat in elevated air $\text{CO}_2$ concentrations

N. HARNOS\*, Z. TUBA\*\*, and K. SZENTE\*\*

*Agricultural Research Institute of the Hungarian Academy of Sciences, Martonvásár, Hungary\**

*Department of Botany and Plant Physiology, Faculty of Agricultural and Environmental Sciences, St István University, Gödöllő, Hungary\*\**

## Abstract

Winter wheat plants were grown in open top chambers either at  $365 \mu\text{mol mol}^{-1}$  (AC) or at  $700 \mu\text{mol mol}^{-1}$  (EC) air  $\text{CO}_2$  concentrations. The photosynthetic response of flag leaves at the beginning of flowering and on four vertical leaf levels at the beginning of grain filling were measured. Net photosynthetic rates ( $P_N$ ) were higher at both developmental phases in plants grown at EC coupled with larger leaf area and photosynthetic pigment contents. The widely accepted Farquhar net photosynthesis model was parameterised and tested using several observed data. After parameterisation the test results corresponded satisfactorily with observed values under several environmental conditions.

**Additional key words:** acclimation; carotenoids; chlorophyll; intercellular  $\text{CO}_2$  concentration; leaf area; net photosynthetic rate; ribulose-1,5-bisphosphate carboxylase/oxygenase capacity; temperature; *Triticum aestivum*.

## Introduction

In the last 30 years there has been growing concern about anthropogenic  $\text{CO}_2$  emissions into the earth's atmosphere (Keeling *et al.* 1976a,b, Haszpra 1995, Hofmann and Peterson 1996). As a result, increased number of experiments have been carried out to understand the effects of elevated air  $\text{CO}_2$  concentration (EC) on important crops, *e.g.* wheat (Krenzer and Moss 1975, Tuba *et al.* 1994, Wheeler *et al.* 1996, Ghildiyal *et al.* 2001). Plants grown at higher  $[\text{CO}_2]$  than at present-day  $[\text{CO}_2]$  have an increased photosynthetic rate and a decreased transpiration rate that leads to better water use efficiency (Tuba *et al.* 1994, 1996). Plants grown at EC have greater biomass and higher yields (Harnos *et al.* 1998). EC also alleviates the effects of various stresses, *e.g.* drought stress (Sionit *et al.* 1980, Ferris *et al.* 1998, Pospíšilová and Čatský 1999) or high temperature (Ingram *et al.* 1995, Ferris *et al.* 1996). The net photosynthetic rate ( $P_N$ ) of  $\text{C}_3$  plants increases at EC under both radiation limited and radiation saturated circumstances (Jauhainen and Silvola 1999). EC increases both  $P_N$  and growth of  $\text{C}_3$  plants, however,

the magnitudes of these increases are very difficult to predict.

Many authors use simulation models, in addition to experimental work, to describe plant development and plant production responses to several environmental factors such as higher temperature, drought stress, and EC. Simulation models describing carbon balance of leaves, whole plants, and ecosystems use a biochemical model of  $P_N$ . The most popular model is the biochemical model of Farquhar *et al.* (1980), Farquhar and Caemmerer (1982), and their modified versions (Sharkey 1985, Harley and Sharkey 1991) called FACASHA model in this study. In general, parameterisation of a simulation model is not an easy task. Most crops respond to their environment in different ways. As a result, parameter values may differ depending on the crop and possibly even the crop cultivar being used. Simulation models are important for describing the effects of EC on photosynthesis. They allow  $P_N$  to be predicted without having to carry out the measurements.

Received 9 April 2002, accepted 17 June 2002.

**Abbreviations:** AC = ambient  $[\text{CO}_2]$ ;  $C_i$  = partial pressure of  $\text{CO}_2$  in the intercellular space; Chl = chlorophyll;  $[\text{CO}_2]$  = air  $\text{CO}_2$  concentration; EC = elevated  $[\text{CO}_2]$ ; FACASHA = model of net photosynthetic rate described by Farquhar *et al.* (1980) and Farquhar and Caemmerer (1982) and modified by Sharkey (1985) and Harley and Sharkey (1991);  $K_c$  = Michaelis constant of  $C_i$  for carboxylation; OTC = open top chamber;  $P_N$  = net photosynthetic rate;  $r^2$  = determination coefficient;  $T$  = rate of phosphate release in triose phosphate utilisation;  $V_{\text{max}}$  = the maximum rate of carboxylation.

**Acknowledgements:** This work was supported by the MEGARICH Project, EU contract ENV4-CT97-0503, the Hungarian Scientific Research Fund (OTKA, Nos. F020704, T18595, T22723), and the Research Development of Higher Education (FKFP0472/97). Dr. T. Janda and Dr. Z. Nagy are gratefully acknowledged for their help and useful comments.

The purpose of this study was to analyse the effects of EC on  $P_N$  of Hungarian winter wheat cv. Emma grown in

## Materials and methods

**Plants and  $\text{CO}_2$  fumigation:** The experiment was carried out at the Global Climate Change and Plant Research Station in Gödöllő, Hungary. The climate of the region is temperate-continental with hot, dry summers. The annual mean temperature is 11 °C and the annual precipitation is 500 mm. The soil is a light moderately calcareous sandy soil. NPK fertilisers were applied respectively at rates of 10, 5, and 5 g m<sup>-2</sup> (100, 50, and 50 kg ha<sup>-1</sup>) before sowing. Seeds of winter wheat (*Triticum aestivum* L. cv. Emma) were sown on 10 October 1996. Spacing of seeds was 13.0×1.5 cm. Wheat plants for the [CO<sub>2</sub>] treatment were transferred into perspex open top chambers (130 cm in diameter and 100 cm in height) from the beginning of germination. [CO<sub>2</sub>] was kept at present-day concentration, AC (365 μmol mol<sup>-1</sup>) for the control and at 700 μmol mol<sup>-1</sup> for the EC treatment. [CO<sub>2</sub>] and ventilation in EC and AC chambers were maintained as described by Tuba *et al.* (1994). The plants were occasionally irrigated as needed and weed control was by mechanical means.

**Measurements:**  $C_i$  dependence of photon saturated  $P_N$  ( $P_N/C_i$  curves) were measured in the flag leaves at the beginning of flowering. Measurements were made using an LCA2-type IRGA system (ADC, Hoddesdon, UK), operated in differential mode and a Parkinson LC-N leaf chamber with an airflow of 5 cm<sup>3</sup> s<sup>-1</sup>. [CO<sub>2</sub>] of 30, 100, 200, 300, 540, 730, and 900 μmol mol<sup>-1</sup> were produced by a gas diluter (GD 600, ADC, Hoddesdon, UK). Photosynthetically active radiation (PAR) and leaf surface temperature were kept constant at 1 000±100 μmol m<sup>-2</sup> s<sup>-1</sup> and 20.5±1.5 °C, respectively. At the beginning of ear filling four different leaf levels of treated and control plant leaves were measured at 350 and 700 μmol(CO<sub>2</sub>) mol<sup>-1</sup> and at a temperature of 35 °C within the canopy under *in situ* irradiance.

Leaf area was measured at the beginning of flowering

## Results

**Photosynthetic pigment contents,  $P_N$ , and leaf area:** Chl  $a/b$  ratio, Chl  $a$ , and carotenoid  $x+c$  contents in the flag leaves of plants grown at EC were significantly higher than in the flag leaves of control plants (Table 2). There were no differences between the values measured at the beginning of flowering and values measured at the beginning of grain filling. The radiation use efficiency was continuously and uniformly greater at EC during the whole vegetative period. These results refer to the relationship between the changes in photochemical activity

open top chambers (OTCs), and to parameterise and test the FACASHA model.

and at the beginning of ear filling by a leaf area meter (LAM 001, Delta T Devices, Cambridge, UK). The photosynthetic pigments—chlorophyll (Chl) ( $a+b$ ) and total carotenoids ( $x+c$ )—of flag leaves were quantitatively determined at the beginning of flowering and at the beginning of grain filling, in 100 % acetone extract solution by spectrophotometer (Shimadzu UV-6000, Shimadzu Co., Kyoto, Japan) using the re-determined extinction coefficients (Lichtenthaler 1987). Gas exchange measurements were made simultaneously on the same leaves at the same time.

**Model parameterisation, validation, and testing:** The gas exchange measurements made on flag leaves at the beginning of flowering were used to set the parameters of the biochemical model described by Farquhar *et al.* (1980), Farquhar and Caemmerer (1982), and the modified version by Sharkey (1985) and Harley and Sharkey (1991) (FACASHA model in this work). A short description of the model can be found in the Appendix. The study of Harley *et al.* (1992) was used as a base for the parameter values that are listed in Table 7. The micrometeorological variables included temperature, irradiance, and [CO<sub>2</sub>]. They were measured and calculated with the IRGA equipment (Table 1).

After parameterisation the model was tested with measurements on four vertical leaf levels at the beginning of grain filling. Data from an earlier experiment described by Tuba *et al.* (1994) were used for model validation.  $C_i$  dependence of seven [CO<sub>2</sub>] was measured at the beginning of flowering of winter wheat cv. Martonvásári 16, which had been grown from germination either at AC or EC. Temperature was set to 20 °C and irradiance to 800 μmol m<sup>-2</sup> s<sup>-1</sup>.

Determination coefficients ( $r^2$ ) were calculated to analyse the comparison and relationship between observed and simulated  $P_N$ .

and  $P_N$  under long term EC treatment: the higher pigment content led to higher radiation use efficiency with significantly higher  $P_N$  and leaf area (Table 2).

At the beginning of grain filling,  $P_N$  and leaf area of plants grown in EC were larger at all leaf levels (Table 3). Furthermore,  $P_N$  decreased as leaf level neared the bottom level. A first quick estimate of these data suggests that  $P_N$  of the whole plant was significantly higher in plants grown from germination at EC than in AC plants.

Table 1. Environmental conditions during measurement of net photosynthetic rate in flag leaves of winter wheat cv. Emma at the beginning of flowering. These values were used for model parameterisation.

|                                              | Grown at<br>AC                     |      |     |     |      |      |     | EC  |      |     |      |      |     |      |     |
|----------------------------------------------|------------------------------------|------|-----|-----|------|------|-----|-----|------|-----|------|------|-----|------|-----|
|                                              | $C_i$ [ $\mu\text{mol mol}^{-1}$ ] | 37   | 81  | 171 | 255  | 410  | 450 | 750 | 35   | 86  | 166  | 224  | 351 | 549  | 598 |
| Leaf temperature [ $^{\circ}\text{C}$ ]      | 22                                 | 19   | 19  | 21  | 21   | 19   | 20  | 20  | 19   | 20  | 20   | 22   | 21  | 22   | 22  |
| PAR [ $\mu\text{mol m}^{-2} \text{s}^{-1}$ ] | 1012                               | 1076 | 916 | 999 | 1048 | 1104 | 981 | 986 | 1040 | 928 | 1020 | 1115 | 995 | 1110 |     |

Table 2. Photosynthetic pigment contents and ratios, net photosynthetic rate ( $P_N$ ), and leaf area of winter wheat cv. Emma grown from germination at AC or at EC. Measurements were made on the flag leaves at the beginning of flowering and of grain filling using 5 to 7 replicates. Gas exchange measurements were made either at 350  $\mu\text{mol mol}^{-1}$  or at 700  $\mu\text{mol mol}^{-1}$  [CO<sub>2</sub>], respectively. F and t probability tests were used to determine significant differences between treatments. Significant difference at the level of \* 5 % or \*\* 1 %. No replication was available at the beginning of grain filling for leaf area. f.m. = fresh mass.

|                            |                                                                     | AC         | EC         |    |
|----------------------------|---------------------------------------------------------------------|------------|------------|----|
| Beginning of flowering     | Chl a [ $\text{g kg}^{-1}$ (f.m.)]                                  | 7.81±0.64  | 9.77±0.57  | ** |
|                            | Chl b [ $\text{g kg}^{-1}$ (f.m.)]                                  | 2.66±0.16  | 2.77±0.19  |    |
|                            | Chl a/b                                                             | 2.94±0.17  | 3.53±0.09  | ** |
|                            | Carotenoids ( $x+c$ ) [ $\text{g kg}^{-1}$ (f.m.)]                  | 1.45±0.20  | 2.19±0.11  | ** |
|                            | Leaf area [ $\text{cm}^2 \text{ plant}^{-1}$ ]                      | 30.80±4.35 | 19.90±5.28 | ** |
|                            | $P_N$ [ $\mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{s}^{-1}$ ] | 9.50±1.20  | 13.50±2.80 | ** |
| Beginning of grain filling | Chl a [ $\text{g kg}^{-1}$ (f.m.)]                                  | 7.58±0.57  | 9.20±0.57  | *  |
|                            | Chl b [ $\text{g kg}^{-1}$ (f.m.)]                                  | 2.66±0.21  | 2.81±0.31  |    |
|                            | Chl a/b                                                             | 2.85±0.14  | 3.28±0.17  | ** |
|                            | Carotenoids ( $x+c$ ) [ $\text{g kg}^{-1}$ (f.m.)]                  | 1.35±0.13  | 1.97±0.30  | ** |
|                            | Leaf area [ $\text{cm}^2 \text{ plant}^{-1}$ ]                      | 16.5       | 25.6       |    |
|                            | $P_N$ [ $\mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{s}^{-1}$ ] | 18.9±1.1   | 48.3±19.8  | ** |

Table 3. Leaf area and net photosynthetic rate ( $P_N$ ) of winter wheat cv. Emma at the beginning of grain filling at four different leaf levels. 1 denotes the top leaf level and 4 the bottom leaf level. The measured photosynthetically active radiation (PAR) is also shown. No replication is available for leaf area measurements. Significant differences at the level of \* 5 % or \*\* 1 %.

| [CO <sub>2</sub> ] [ $\mu\text{mol mol}^{-1}$ ] | Leaf area [ $\text{cm}^2$ ] |     | $P_N$ [ $\mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{s}^{-1}$ ] |          | PAR [ $\mu\text{mol m}^{-2} \text{s}^{-1}$ ] |           |
|-------------------------------------------------|-----------------------------|-----|---------------------------------------------------------------------|----------|----------------------------------------------|-----------|
|                                                 | 375                         | 700 | 375                                                                 | 700      |                                              |           |
| Leaf level                                      | 1                           | 3.1 | 6.2                                                                 | 19.0±1.1 | **                                           |           |
|                                                 | 2                           | 4.9 | 7.4                                                                 | 9.9±0.7  | 13.7±5.2                                     | 1200-1300 |
|                                                 | 3                           | 4.7 | 6.9                                                                 | 1.3±1.5  | *                                            | 11.2±0.3  |
|                                                 | 4                           | 3.8 | 5.1                                                                 | 1.5±1.7  | *                                            | 10.2±0.2  |

**Model parameterisation:** The parameterisation of the FACASHA model was performed on winter wheat cv. Emma, using  $P_N$  measurements on flag leaves at seven different air CO<sub>2</sub> concentrations, at the beginning of flowering for plants grown at AC or at EC. The measured small temperature fluctuations (Table 1) were calculated during model parameterisation. Parameter values of Harley *et al.* (1992)—a model parameterised for cotton grown either at AC or at EC—were used as a base. Parameter values  $c(K_c)$ ,  $c(V_{\text{cmax}})$ , and  $c(T)$ , which were used to describe the temperature dependence of Michaelis constant of  $C_i$  for carboxylation ( $K_c$ ), the maximum rate of carboxylation ( $V_{\text{cmax}}$ ), and rate of phosphate release in triose phosphate utilisation ( $T$ ), had to be altered. Table 4 lists experimental parameter values and compares them to

those of Harley *et al.* (1992). The determination coefficients between observed and simulated net photosynthetic rates were  $r^2 = 0.916$  for plants grown at AC and  $r^2 = 0.980$  for plants grown at EC. Simulation results of the parameterised model are shown in Fig. 1A. Simulation results were not affected by irradiation because of radiation saturated conditions. Both measured and simulated  $P_N$  were very sensitive to small temperature fluctuations (Fig. 1A), which means very good approximation. In both treatments  $P_N$  was limited by the rate of phosphate release in triose phosphate utilisation at higher [CO<sub>2</sub>]. The CO<sub>2</sub> saturation concentration and the saturated  $P_N$  were smaller for AC plants than for the EC ones.

**Testing the model:** The model was tested using two sets

of data. The first data set was taken from the present experiment.  $P_N$  was measured at the beginning of grain filling on four vertical leaf levels of winter wheat. For lower leaf levels,  $K_c$ ,  $K_o$ , and  $V_{cmax}$  had to be multiplied by constants listed in Table 5. The values of these constants depended on the vertical leaf levels. In all cases, there was high correlation between observed and simulated  $P_N$  values. Fig. 2 indicates the outcome of the comparison test results where  $r^2 = 0.960$  for plants grown and measured at AC,  $r^2 = 0.940$  for plants grown at EC and measured at AC,  $r^2 = 0.980$  for plants grown at AC and measured at EC,  $r^2 = 0.865$  for plants grown and measured at EC. Rate of phosphate release in triose phosphate

utilisation limitation of  $P_N$  occurred at the top leaf level and radiation limitation occurred at the bottom level in both treatments.

For a realistic validation of the model a second data set from an earlier experiment (Tuba *et al.* 1994) was used (Fig. 1B). The data set included  $C_i$  concentration and  $P_N$  at the beginning of flowering of winter wheat cv. Martonvásári 16, air temperature (20 °C), and irradiance (800  $\mu\text{mol m}^{-2} \text{s}^{-1}$ ). Parameter values described above in "Model parameterisation" were used. Determination coefficients between observed and simulated  $P_N$  were significantly greater than zero, where  $r^2 = 0.940$  for plants grown at AC and  $r^2 = 0.980$  for plants grown at EC.

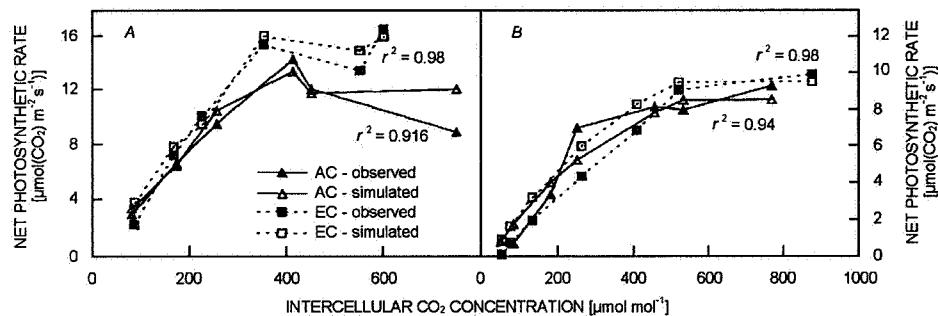



Fig. 1. Measured and simulated net photosynthetic rate of flag leaves of winter wheat cv. Emma (A) or Martonvásári 16 (B, values from Tuba *et al.* 1994) grown from germination at ambient, AC (control), or enhanced, EC  $\text{CO}_2$  concentration.  $r^2$  denotes determination coefficient between observed and simulated values.

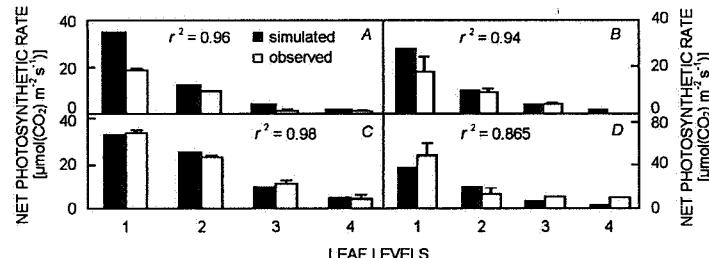



Fig. 2. Measured and simulated net photosynthetic rate of winter wheat cv. Emma grown from germination at ambient, AC (control) (A, C), or enhanced, EC  $\text{CO}_2$  concentration (B, D) and measured at CA (A, B) or EC (C, D).  $r^2$  denotes determination coefficient between observed and simulated values.

Table 4. Altered temperature dependence values of  $K_c$ ,  $V_{cmax}$ , and  $T$  in FACASHA model, compared to Harley *et al.* (1992). (See also Table 7.)

| Parameter     | Harley <i>et al.</i> (1992)<br>[ $\text{CO}_2$ ] [ $\mu\text{mol mol}^{-1}$ ] | Present study | Harley <i>et al.</i> (1992) | Present study |
|---------------|-------------------------------------------------------------------------------|---------------|-----------------------------|---------------|
|               | 350                                                                           |               | 650-700                     |               |
| $c(K_c)$      | 35.79                                                                         | 36.1          | 35.79                       | 36.35         |
| $c(V_{cmax})$ | 51.07                                                                         | 51            | 49.46                       | 49.65         |
| $c(T)$        | 23.59                                                                         | 23.29         | 23.59                       | 23.39         |

**Applications:** The model can be used to calculate the temperature dependent variables  $V_{cmax}$ ,  $J_{max}$ , and  $T$  for comparison with values from the literature: Table 6 compares calculated  $V_{cmax}$ ,  $J_{max}$ , and  $T$  values with average values of 109  $C_3$  species and with seven different winter

wheat cultivars (Wullschleger 1993). At  $T = 20$  or  $25$  °C calculated values of  $V_{cmax}$ ,  $J_{max}$ , and  $T$  from the current study approach the averages of 109 species and the averages of seven different winter wheat cultivars. The last two columns of Table 6 show, how quickly the

Table 5. Multiplication constants of temperature dependent parameters ( $K_c$ ,  $K_o$ , and  $V_{cmax}$ ) of the FACASHA model.

| Leaf level | $K_c$ | $K_o$ | $V_{cmax}$ |
|------------|-------|-------|------------|
| 1          | 1.0   | 1.0   | 1.00       |
| 2          | 1.0   | 1.0   | 0.35       |
| 3          | 1.5   | 0.3   | 0.35       |
| 4          | 3.0   | 0.3   | 0.35       |

temperature dependent parameter values increase with increase in temperature.

A second application of the model is in drawing up  $P_N/C_i$  curves at different temperatures for Hungarian winter wheat cultivars grown at AC and EC. The high sensitivity of  $P_N$  to temperatures between 20 and 40 °C is seen (Fig. 3). At different temperatures, saturated  $P_N$  occurs at different  $C_i$ . The quick decline of  $P_N$  can be ob-

tained when temperature reaches 40 °C.

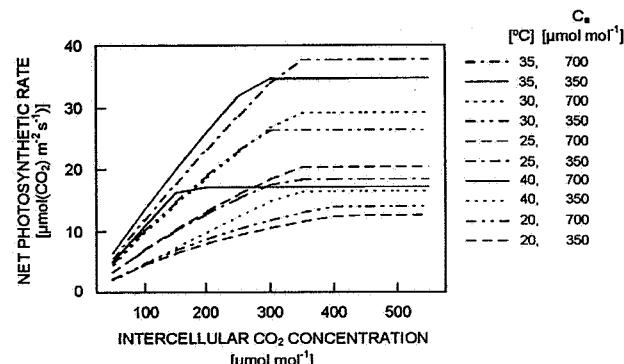



Fig. 3. Simulated temperature and intercellular CO<sub>2</sub> concentration dependence of net photosynthetic rate of flag leaves of winter wheat grown from germination at ambient (350) or enhanced (700) CO<sub>2</sub> concentration.

Table 6. Average parameter values of  $V_{cmax}$ ,  $J_{max}$ , and  $T$  for 109 species and seven different winter wheat cultivars (Wullschleger 1993), and calculated parameter values from the present study of wheat grown from germination at AC or EC.

| Wullschleger (1993)                                   |                        | Present study - irradiance of 1 000 $\mu\text{mol mol}^{-2} \text{s}^{-1}$ |       |                 |       |                                                 |                   |
|-------------------------------------------------------|------------------------|----------------------------------------------------------------------------|-------|-----------------|-------|-------------------------------------------------|-------------------|
| 20 and 25 °C                                          | Average parameters of: | 20 °C                                                                      | 25 °C | 20 °C and 25 °C | 30 °C | Parameter values for:                           | Average parameter |
|                                                       |                        |                                                                            |       |                 |       | [CO <sub>2</sub> ] [ $\mu\text{mol mol}^{-1}$ ] |                   |
| 109 species                                           | 7 wheat cvs.           | 365                                                                        | 700   | 365             | 700   |                                                 |                   |
| $V_{cmax}$ [ $\mu\text{mol mol}^{-2} \text{s}^{-1}$ ] | 64.0                   | 60.0                                                                       | 30.0  | 38.0            | 56.0  | 46.0                                            | 42.5              |
| $J_{max}$ [ $\mu\text{mol mol}^{-2} \text{s}^{-1}$ ]  | 134.0                  | 145.4                                                                      | 94.0  | 99.0            | 144.0 | 111.0                                           | 112.0             |
| $T$ [ $\mu\text{mol mol}^{-2} \text{s}^{-1}$ ]        | 10.10                  | -                                                                          | 4.70  | 5.20            | 6.40  | 5.70                                            | 5.50              |
|                                                       |                        |                                                                            |       |                 |       |                                                 | 135.9             |
|                                                       |                        |                                                                            |       |                 |       |                                                 | 236.3             |
|                                                       |                        |                                                                            |       |                 |       |                                                 | 9.47              |

## Discussion

The aim of our experiment was to get information on how the model of Farquhar *et al.* (1980) and Farquhar and Caemmerer (1982) modified by Sharkey (1985) and Harley and Sharkey (1991) describes  $P_N$  of Hungarian winter wheat cultivars under different environment. Results of  $P_N$  measurements yielded two important factors: first, there was a large increase in  $P_N$  as a result of EC, and second, there was increased acclimation to low irradiance in the canopy. Photosynthetic activity was significantly increased in the lower canopy layer where irradiance was very poor, particularly within the canopy of EC plants. This corroborates the conclusion of earlier investigations (Szente *et al.* 1998) that production of shadow layer influences the total production of plant stands. Our argument is further strengthened by the fact that the amount of most photosynthetic pigments increased under EC. The greater pigment content of plants grown at EC led to more photosynthetic units and better radiation use efficiency.

Our study also supports the use of the model for describing  $P_N$  of different C<sub>3</sub> plants under several environmental conditions. Parameterisation and validation for different plant species is essential, but our results show that the same parameterisation can be used for two differ-

ent Hungarian winter wheat cultivars grown in different years.  $P_N$  measured and simulated on four different vertical leaf levels indicates how carefully  $P_N$  of the whole canopy has to be calculated, especially when studying the effects of some environmental changes. In many crop growth simulation models,  $P_N$  of a canopy has been described in very simplified form. The simulated effects of EC on plant production can be misleading: little account is taken of higher canopy densities and lower irradiance in the lower shade canopy level, and decreased  $P_N$  due to long term exposure to EC (Cure and Acock 1986, Harnos 2000). Photosynthetic pigment contents of flag leaves did not change during [CO<sub>2</sub>] treatments at different developmental stages, which meant they had the same radiation use efficiency. This made the model parameterisation easier, and it may be one reason why the model worked well with the same parameter set for several developmental stages.

In conclusion, FACASHA model is suitable for describing  $P_N$  of different winter wheat cultivars under various environmental conditions (irradiance, temperature, CO<sub>2</sub>). Hence FACASHA should be included in winter wheat growth simulation models.

Table 7. List of model parameters and the parameters used to describe their temperature dependencies. Source: Harley *et al.* (1992). Parameter values in italics had to be changed in this study.

| Parameter               | Unit                                                   | Temperature parameters     | [CO <sub>2</sub> ]                       | [μmol mol <sup>-1</sup> ] | Unit                                    |
|-------------------------|--------------------------------------------------------|----------------------------|------------------------------------------|---------------------------|-----------------------------------------|
| <i>K<sub>c</sub></i>    | Pa (CO <sub>2</sub> )                                  | <i>c(K<sub>c</sub>)</i>    | <b>35.79</b>                             |                           | -                                       |
|                         |                                                        | $\Delta H_a(K_c)$          | 80.47                                    | [kJ mol <sup>-1</sup> ]   |                                         |
| <i>K<sub>o</sub></i>    | Pa (CO <sub>2</sub> )                                  | <i>c(K<sub>o</sub>)</i>    | 9.59                                     | -                         |                                         |
|                         |                                                        | $\Delta H_a(K_o)$          | 14.51                                    | [kJ mol <sup>-1</sup> ]   |                                         |
| <i>τ</i>                | -                                                      | <i>c(τ)</i>                | -3.9489                                  | -                         |                                         |
|                         |                                                        | $\Delta H_a(τ)$            | -28.99                                   | [kJ mol <sup>-1</sup> ]   |                                         |
| <i>R<sub>day</sub></i>  | μmol(CO <sub>2</sub> ) m <sup>-2</sup> s <sup>-1</sup> | <i>c(R<sub>day</sub>)</i>  | Estimated; <i>R<sub>day</sub></i> = 0.82 | -                         |                                         |
|                         |                                                        | $\Delta H_a(R_{day})$      |                                          | [kJ mol <sup>-1</sup> ]   |                                         |
| <i>V<sub>cmax</sub></i> | μmol(CO <sub>2</sub> ) m <sup>-2</sup> s <sup>-1</sup> | <i>c(V<sub>cmax</sub>)</i> | <b>51.07</b>                             | <b>49.46</b>              | -                                       |
|                         |                                                        | $\Delta H_a(V_{cmax})$     | 116.3                                    | 112.4                     | [kJ mol <sup>-1</sup> ]                 |
|                         |                                                        | $\Delta H_d(V_{cmax})$     | 202.9                                    | 201.7                     | [kJ mol <sup>-1</sup> ]                 |
|                         |                                                        | $\Delta S(V_{cmax})$       | 0.65                                     | 0.65                      | [kJ K <sup>-1</sup> mol <sup>-1</sup> ] |
| <i>J<sub>max</sub></i>  | μmol(CO <sub>2</sub> ) m <sup>-2</sup> s <sup>-1</sup> | <i>c(J<sub>max</sub>)</i>  | 37.08                                    | 32.88                     | -                                       |
|                         |                                                        | $\Delta H_a(J_{max})$      | 79.5                                     | 69.1                      | [kJ mol <sup>-1</sup> ]                 |
|                         |                                                        | $\Delta H_d(J_{max})$      | 201.0                                    | 201.1                     | [kJ mol <sup>-1</sup> ]                 |
|                         |                                                        | $\Delta S(J_{max})$        | 0.65                                     | 0.65                      | [kJ K <sup>-1</sup> mol <sup>-1</sup> ] |
| <i>T</i>                | μmol(CO <sub>2</sub> ) m <sup>-2</sup> s <sup>-1</sup> | <i>c(T)</i>                | <b>23.59</b>                             | <b>23.59</b>              | -                                       |
|                         |                                                        | $\Delta H_a(T)$            | 53.1                                     | 53.1                      | [kJ mol <sup>-1</sup> ]                 |
|                         |                                                        | $\Delta H_d(T)$            | 201.8                                    | 201.6                     | [kJ mol <sup>-1</sup> ]                 |
|                         |                                                        | $\Delta S(T)$              | 0.65                                     | 0.65                      | [kJ K <sup>-1</sup> mol <sup>-1</sup> ] |
| <i>α</i>                | mol(electron) mol <sup>-1</sup> (photon)               | -                          | 0.24                                     | -                         |                                         |

## References

Brooks, A., Farquhar, G.D.: Effect of temperature on the CO<sub>2</sub>/O<sub>2</sub> specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Estimates from gas-exchange experiments on spinach. – *Planta* **165**: 397-406, 1985.

Cure, J.D., Acock, B.: Crop responses to carbon dioxide doubling: a literature survey. – *Agr. Forest Meteorol.* **38**: 127-145, 1986.

Farquhar, G.D., Caemmerer, S. von: Modelling of photosynthetic response to environmental conditions. – In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (ed.) *Physiological Plant Ecology II*. Pp. 549-587. Springer-Verlag, Berlin – Heidelberg – New York 1982.

Farquhar, G.D., Caemmerer, S. von, Berry, J.A.: A biochemical model of photosynthetic CO<sub>2</sub> assimilation in leaves of C<sub>3</sub> species. – *Planta* **149**: 78-90, 1980.

Ferris, R., Wheeler, T.R., Hadley, P., Ellis, R.H.: Greenhouse experiment on the effects of high temperature episodes and drought under elevated CO<sub>2</sub> on soya bean. – In: Harrison, P.A., Butterfield, R.E., Downing, T.E. (ed.): *Climate Change, Climatic Variability and Agriculture in Europe. An Integrated Assessment*. Environmental Change Institute, University of Oxford, Oxford Ann. Rep. Jan. to Dec. 1996.

Ferris, R., Wheeler, T.R., Hadley, P., Ellis, R.H.: Recovery of photosynthesis after environmental stress in soybean grown under elevated CO<sub>2</sub>. – *Crop Sci.* **38**: 948-955, 1998.

Ghildiyal, M.C., Rafique, S., Sharma-Natu, P.: Photosynthetic acclimation to elevated CO<sub>2</sub> in relation to leaf saccharide constituents in wheat and sunflower. – *Photosynthetica* **39**: 447-452, 2001.

Harley, P.C., Sharkey, T.D.: An improved model of C<sub>3</sub> photosynthesis at high CO<sub>2</sub>: Reversed O<sub>2</sub> sensitivity explained by lack of glycerate reentry into the chloroplast. – *Photosynth. Res.* **27**: 169-178, 1991.

Harley, P.C., Thomas, R.B., Raynolds, J.F., Strain, B.R.: Modelling photosynthesis of cotton grown in elevated CO<sub>2</sub>. – *Plant Cell Environ.* **15**: 271-282, 1992.

Harnos, N.: [Use of simulation models to analyse the predicted effects of climatic changes on wheat production.] – *Növénytermelés* **2000**(1-2): 41-55, 2000. [In Hung.]

Harnos, N., Veisz, O., Tischner, T.: Effects of elevated CO<sub>2</sub> concentration on the development and yield components of cereals. – *Acta agron. hung.* **46**: 15-24, 1998.

Haszpra, L.: Carbon dioxide concentration measurements at a rural site in Hungary. – *Tellus* **47B**: 17-22, 1995.

Hofmann, D.J., Peterson, J.T. (ed.): *Climate Monitoring and Diagnostics Laboratory No. 23. – Summary Report 1994-95*. Boulder 1996.

Ingram, K.T., Manalo, P.A., Namuco, O.S., Pamplona, R.R., Weerakoon, W.M., Peng, S., Ingram, K.T., Neue, H.U., Ziska, L.H. (ed.): Interactive effects of elevated carbon dioxide and temperature on rice growth and development. – In: Peng, S., Ingram, K.T., Neue, H.U. (ed.): *Climate Change and Rice*. Pp. 278-287. Springer-Verlag, Berlin 1995.

Jauhainen, J., Silvola, J.: Photosynthesis of *Sphagnum fuscum* at long-term raised CO<sub>2</sub> concentrations. – *Ann. bot. fenn.* **36**: 11-19, 1999.

Johnson, F., Eyring, H., Williams, R.: The nature of enzyme inhibitions in bacterial luminescence: sulfanilamide, urethane, temperature and pressure. – *J. Cell Comp. Physiol.* **20**: 247-

268, 1942.

Jordan, D.B., Orgen, W.L.: The CO<sub>2</sub>/O<sub>2</sub> specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Dependence on ribulosebisphosphate concentration, pH and temperature. – *Planta* **161**: 308-313, 1984.

Keeling, C.D., Adams, J.A., Ekhdal, C.A., Guenther, P.R.: Atmospheric carbon dioxide variations at the South Pole. – *Tellus* **28**: 552-564, 1976b.

Keeling, C.D., Bacastow, R.B., Bainbridge, A.E., Ekhdal, C.A., Guenther, P.R., Waterman, T.S., Chin, J.F: Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. – *Tellus* **28**: 538-551, 1976a.

Krenzer, E.G., Jr., Moss, D.N.: Carbon dioxide enrichment effects upon yield and yield components in wheat. – *Crop Sci.* **15**: 71-74, 1975.

Lichtenthaler, H.K.: Chlorophylls and carotenoids – pigments of photosynthetic biomembranes. – In: Colowick, S.P., Kaplan, N.O. (ed.): *Methods in Enzymology*. Vol. **148**. Pp. 350-382. Academic Press, San Diego – New York – Berkeley – Boston – London – Sydney – Tokyo – Toronto 1987.

Pospíšilová, J., Čatský, J.: Development of water stress under increased atmospheric CO<sub>2</sub> concentration. – *Biol. Plant.* **42**: 1-24, 1999.

Sharkey, T.D.: Photosynthesis in intact leaves of C<sub>3</sub> plants: physics, physiology and rate limitations. – *Bot. Rev.* **51**: 53-105, 1985.

Sionit, N., Hellmers, H., Strain, B.R.: Growth and yield of wheat under CO<sub>2</sub> enrichment and water stress. – *Crop Sci.* **20**: 687-690, 1980.

Smith, E.: The influence of light and carbon dioxide on photosynthesis. – *Gen. Physiol.* **20**: 807-830, 1937.

Szente, K., Nagy, Z., Tuba, Z.: Enhanced water use efficiency in dry loess grassland species grown at elevated air CO<sub>2</sub> concentration. – *Photosynthetica* **35**: 637-640, 1998.

Tuba, Z., Szente, K., Koch, J.: Response of photosynthesis, stomatal conductance, water use efficiency and production to long-term elevated CO<sub>2</sub> in winter wheat. – *J. Plant Physiol.* **144**: 661-668, 1994.

Tuba, Z., Szente, K., Nagy, Z., Csintalan, Z., Koch, J.: Responses of CO<sub>2</sub> assimilation, transpiration and water use efficiency to long-term elevated CO<sub>2</sub> in perennial C<sub>3</sub> xeric loess steppe species. – *J. Plant Physiol.* **148**: 356-361, 1996.

Wheeler, T.R., Hong, T.D., Ellis, R.H., Batts, G.R., Morison, J.I.L., Hadley, P.: The duration and rate of grain growth and harvest index of wheat (*Triticum aestivum L.*) in response to temperature and CO<sub>2</sub>. – *J. exp. Bot.* **47**: 623-630, 1996.

Wullschleger, S.D.: Biochemical limitations to carbon assimilation in C<sub>3</sub> plants – A retrospective analysis of the A/C<sub>i</sub> curves from 109 species. – *J. exp. Bot.* **44**: 907-920, 1993.

## Appendix

### Symbols and units:

RuBP: ribulose-1,5-bisphosphate

RuBPCO: RuBP carboxylase/oxygenase

$P_N$  [ $\mu\text{mol m}^{-2} \text{s}^{-1}$ ]: net photosynthetic rate of leaf

$V_c$  [ $\mu\text{mol m}^{-2} \text{s}^{-1}$ ]: rate of carboxylation at RuBPCO

$V_o$  [ $\mu\text{mol m}^{-2} \text{s}^{-1}$ ]: rate of oxygenation at RuBPCO

$\tau$ : specificity factor for RuBPCO (Jordan and Orgen 1984)

$C_i$  [Pa]: partial pressure of CO<sub>2</sub> in the intercellular space

$O_i$  [kPa]: partial pressure of O<sub>2</sub> in the intercellular space ( $O_i = 30$  kPa)

$R_{\text{day}}$  [ $\mu\text{mol m}^{-2} \text{s}^{-1}$ ]: day respiration rate (excluding photorespiration) (Brooks and Farquhar 1985)

$W_c$  [ $\mu\text{mol m}^{-2} \text{s}^{-1}$ ]: RuBPCO (amount, activation state and kinetic properties) limited carboxylation rate

$W_j$  [ $\mu\text{mol m}^{-2} \text{s}^{-1}$ ]: RuBP regeneration-limited carboxylation rate

$T$  [ $\mu\text{mol m}^{-2} \text{s}^{-1}$ ]: rate of phosphate release in triose phosphate utilisation (starch and sucrose production)

$W_p$  [ $\mu\text{mol m}^{-2} \text{s}^{-1}$ ]:  $T$ -limited carboxylation rate (Sharkey 1985, Harley and Sharkey 1991, Harley *et al.* 1992)

$V_{c\text{max}}$  [ $\mu\text{mol m}^{-2} \text{s}^{-1}$ ]: maximum rate of carboxylation

$K_c$  [ $\mu\text{mol m}^{-2} \text{s}^{-1}$ ]: Michaelis constant of  $C_i$  for carboxylation

$K_o$  [ $\mu\text{mol m}^{-2} \text{s}^{-1}$ ]: Michaelis constant of  $O_i$  for oxygenation

$J$  [ $\mu\text{mol m}^{-2} \text{s}^{-1}$ ]: potential rate of electron transport (Smith 1937)

$I$  [ $\mu\text{mol m}^{-2} \text{s}^{-1}$ ]: quantum flux density absorbed by the leaf

$\alpha$ : efficiency of radiant energy conversion on an incident irradiance basis [mol(electron) mol<sup>-1</sup>(photon)]

$J_{\text{max}}$  [ $\mu\text{mol m}^{-2} \text{s}^{-1}$ ]: radiation saturated rate of electron transport

To model net photosynthetic rate ( $P_N$ ) of the C<sub>3</sub> plant winter wheat, the model presented by Farquhar *et al.* (1980) and Farquhar and Caemmerer (1982) was used. It was modified to include a potential phosphate limitation arising from the failure of triose phosphate utilisation (starch and sucrose production) to keep up with triose phosphate production in the Calvin cycle by Sharkey (1985) and Harley and Sharkey (1991).

$P_N$  can be expressed:

$$P_N = V_c - 0.5 V_o - R_{\text{day}} = V_c \left(1 - \frac{0.5 \frac{O_i}{C_i}}{\tau}\right) - R_{\text{day}},$$

where the rate of carboxylation,  $V_c$ , is assumed to be limited by one of three factors:

$$W_c = \min\{W_c, W_j, W_p\}$$

$$W_c = \frac{V_{c\max} C_i}{C_i + K_c (1 + O_i / K_o)},$$

where the carboxylation is limited by the amount, activation state and kinetic properties of RuBPCO.

$$W_j = \frac{J C_i}{4(C_i + O_i / \tau)}$$

In the  $W_j$  formula above, it is assumed that four electrons generate sufficient STP and NADPH for the regeneration of RuBP in the Calvin cycle (Farquhar and Caemmerer 1982). The radiation dependency in the model is on electron transport (Smith 1937):

$$J = \frac{\alpha I}{(1 + \frac{\alpha^2 I^2}{J_{\max}^2})^{1/2}},$$

and

$$W_p = 3 T + 0.5 V_o = 3 \cdot T + \frac{V_c 0.5 O_i}{C_i \tau C_i \tau}$$

Temperature dependence of  $K_c$ ,  $K_o$ ,  $R_d$ ,  $\tau$ ,  $J_{\max}$ ,  $V_{c\max}$  and  $T$  are:

$$\text{parameter } (K_c, K_o, R_d, \tau) = e^{c - \frac{\Delta H_a}{R T_k}}$$

and

$$\text{parameter } (J_{\max}, V_{c\max}, T) = \frac{e^{c - \frac{\Delta H_a}{R T_k}}}{1 + e^{\frac{\Delta S T_k - \Delta H_d}{R T_k}}}$$

(Johnson *et al.* 1942), where  $c$  is a scaling constant,  $\Delta H_a$  is an activation energy,  $R$  is the gas constant ( $R = 0.00831 \text{ kJ K}^{-1} \text{ mol}^{-1}$ ),  $T_k$  is leaf temperature [K].  $\tau$  is a declining function of temperature whose activation energy is negative.  $\Delta H_d$  is the energy of deactivation, and  $\Delta S$  is an entropy term. Parameter values are listed in Table 4 and Table 7.