

High contents of anthocyanins in young leaves are correlated with low pools of xanthophyll cycle components and low risk of photoinhibition

Y. MANETAS*, A. DRINIA, and Y. PETROPOULOU

Laboratory of Plant Physiology, Department of Biology, University of Patras, GR-265 00 Patras, Greece

Abstract

We checked the hypothesis that the transient presence of anthocyanins in young leaves serves a photoprotective function. For this purpose, *Rosa* sp. and *Ricinus communis* L., whose young leaves are red to become green upon maturation, were used. Thus, young leaves with high and mature leaves with low anthocyanin contents were analysed concerning their carotenoid (Car) composition and susceptibility to photoinhibition. Cars, including the components of the xanthophyll cycle, had similar contents in young and mature leaves, when expressed on a chlorophyll basis. Yet, when expressed on a leaf area basis or on the assumed photon absorptive capacity of leaves, Cars contents were considerably lower in anthocyanic young leaves. Although this may indicate a low photodissipative potential, red young leaves were considerably less susceptible to photoinhibitory damage. The results are compatible with a photoprotective function of anthocyanins, indicating also that their presence may compensate for a low capacity in the xanthophyll cycle-dependent harmless dissipation of excess excitation energy.

Additional key words: carotenoids; chlorophylls; fluorescence kinetics; leaf age; photosystem 2; *Ricinus communis*; *Rosa* sp.

Introduction

Photon energy drives photosynthesis, yet under some circumstances it may become inhibitory. Whenever the absorbed energy of photons exceeds that which can be used for CO₂ assimilation (*i.e.* under cold, drought, or mineral deficiencies), photo-oxidative conditions may be developed, unless the plant is capable of morphological and/or biochemical adjustments to avoid or dissipate the excess excitation energy (Smirnoff 1993, Long *et al.* 1994, Choudhury and Behera 2001). The xanthophyll cycle inter-conversions facilitate the harmless overflow of extra photons through the production of zeaxanthin and antheraxanthin. These compounds trap the surplus energy in the pigment bed of the light-harvesting complexes and transform it to heat before it reaches the reaction centres (Demmig-Adams *et al.* 1996). Accordingly, a plant with large pools of the xanthophyll cycle components is considered well equipped for adaptive short term down regulation of photosynthesis and may also withstand chronic photoinhibitory conditions (Long *et al.* 1994, Demmig-Adams *et al.* 1995).

An unbalance between photon absorption and utilisation may be inferred for young leaves, where the ability

to absorb photons and evolve oxygen is developed before the full sufficiency of the CO₂ reduction system (Miranda *et al.* 1981, Ireland *et al.* 1985, Šesták *et al.* 1985). Indeed, the limited amount of data up to now has shown that young leaves are more prone to photoinhibition, although the pools of the xanthophyll cycle components are larger, compared to those of mature leaves (Krause *et al.* 1995, Barker *et al.* 1997).

The adverse effects of excess photons can be alleviated by the accumulation of non-photosynthetic, light screening pigments in the leaves. Anthocyanins, for example, are flavonoids with their absorbance maxima shifted within the visible part of the spectrum (Swain 1976). They occur in small amounts in almost every leaf. In rare cases their contents are so high that they mask the Chl greenness and give a red colour to the leaves. Red leaf anthocyanins have been correlated with resistance against biotic and abiotic agents such as fungi, herbivores, drought, cold, and radiation, both UV-B and visible (see reviews by Chalker-Scott 1999, Hoch *et al.* 2001, and the literature there-in). However, experimental tests for the hypothesis of a photoprotective role of antho-

Received 12 June 2002, accepted 20 August 2002.

* Corresponding author; phone - fax: + 30 (0) 610 997411, e-mail: y.manetas@upatras.gr

Abbreviations: Car, carotenoid; Chl, chlorophyll; PAR, photosynthetically active radiation; PS, photosystem; VAZ, violaxanthin + antheraxanthin + zeaxanthin.

cyanins in mature or senescent leaves gave conflicting results. Thus a correlation between tolerance to photoinhibition and anthocyanin accumulation was suggested in some studies (Krol *et al.* 1995, Mendez *et al.* 1999, Feild *et al.* 2001) but not in others (Burger and Edwards 1996, Dodd *et al.* 1998, Gould *et al.* 2000). In contrast, two studies performed with chlorophyllous and anthocyanic fruits presented evidence in favour of a photo-protective role (Smillie and Hetherington 1999, Merzlyak and Chivkunova 2000).

Much more common is the presence of red, young developing leaves that become green upon maturation (Harborne 1976). According to the Darwinian paradigm, the selection of this trait for transient investment in anthocyanin production in many species should indicate an adaptive significance for young leaves, but no benefit for

mature leaves. Indeed, the attenuation of green and yellow radiation by anthocyanins (Neill and Gould 1999) may be protective under excess irradiance but does not allow the effective utilisation of the full visible solar spectrum by a mature chloroplast under low or moderate irradiance. However, in young, photoinhibition-sensitive leaves (Krause *et al.* 1995) the relative importance of photoprotection by anthocyanins may prevail. Such function has also been ascribed to the transient, highly reflective pubescence of young plane leaves (Bisba *et al.* 1997).

Based on the above, we sought experimental evidence for the photo-protective hypothesis by comparing the xanthophyll cycle-dependent photo-dissipative capacity and the sensitivity to photoinhibition in young (red) and mature (green) leaves of *Rosa* sp. and *Ricinus communis* L.

Materials and methods

Plant material and sampling: The experiments of this investigation were performed during the springs of 2000 and 2001 with *Rosa* sp. used as ornamental in the Patras University Campus and *Ricinus communis* L. growing wild in the vicinity. In both species new leaves burst during the spring (early March to late May) in a rather extended growth period. Therefore, by mid April one may find on the plants all leaf age classes from just bursting to maturity. Three individuals from each taxon were tagged and used throughout this study. On each sampling date, an equal number of young or mature leaves were harvested from each individual late in the afternoon, put in air-tight plastic bags containing moist filter paper, and left in the dark at room temperature all night, to be analysed the next morning. Care was taken to use leaves of comparable physiological age and irradiation history. Thus, criteria for leaf selection were full exposure and a similarity of their dimensions and Chl contents. Chl contents were assessed in the field non-destructively before harvest from the readings of a *Minolta SPAD-502* portable Chl meter. The credibility of this instrument in the measurements of Chl content of red leaves has been previously confirmed (Manetas *et al.* 1998). In general we used young leaves having attained 50 and 20 % of their final size (for *Rosa* sp. and *R. communis*, respectively) and 50 % of their mature Chl content.

Photosynthetic pigments: An appropriate leaf area (*ca.* 14.5 ± 2.3 and $19.7 \pm 1.7 \text{ cm}^2$ for *Rosa* sp. and *R. communis*, respectively, *LI-3000* leaf area meter of *Li-COR*), taken from an equal number of young or mature leaves from each individual, was extracted. To facilitate extraction, the leaves were frozen in the mortar by adding a small volume of liquid nitrogen. Pigment extraction was performed in dim light by grinding the frozen samples in the mortar with 100 % acetone in the presence of a

small amount of CaCO_3 . The extract was centrifuged at $5\,000 \times g$ for 10 min at 2°C and the supernatant was further cleared by passing through a $0.45 \mu\text{m}$ filter. Chls were measured spectrophotometrically, using a *Shimadzu UV-160A* double beam spectrophotometer, and concentration was estimated according to the equations of Lichtenthaler and Wellburn (1983). Car separation was performed with a *Shimadzu LC-10 AD HPL* chromatograph, equipped with a non-endcapped *Zorbax ODS* ($4.6 \times 250 \text{ mm}$) column (*Rockland Technologies*, Chadds Ford, PA, USA) and calibrated against purified β -carotene (*Sigma Chemical*, St. Louis, MO, USA). Freshly prepared Cars were separated by thin-layer chromatography as described by Kyparissis *et al.* (1995). Development was performed isocratically at $16.7 \text{ mm}^3 \text{ s}^{-1}$ (20 min with acetonitrile : methanol, 85 : 15 v/v, and 20 min with methanol : ethyl acetate, 68 : 32 v/v), according to Thayer and Björkman (1990). Pigments were detected by measuring absorbance at 445 nm, using a *Shimadzu SPD-10A UV-VIS* detector. Peak areas were integrated by a *Shimadzu C-R6A Chromatopac*.

For anthocyanin determination, an aliquot of the acetone extract was acidified to 1 % HCl and absorbance was scanned from 400–700 nm. The peak anthocyanin absorbance was corrected for the contribution of chlorophyllous pigments at this wavelength (Mancinelli *et al.* 1975) and transformed to actual concentrations by using the mean molar absorption coefficient for anthocyanins according to Murray and Hackett (1991). The location of anthocyanins was examined in free-hand cross-sections of fresh leaves under a *Zeiss Axioplan* microscope.

Photoinhibitory treatment: Discs were cut from leaves kept in darkness overnight and Chl fluorescence transients were obtained with a commercial fluorimeter (*PEA*, Plant Efficiency Analyser, *Hansatech*, King's Lynn, UK). Chl was excited with red radiation of 1500

$\mu\text{mol m}^{-2} \text{s}^{-1}$ and the maximum photosystem 2 (PS2) photochemical efficiency (as F_v/F_m) was obtained. The discs were then placed on moistened filter paper in Petri dishes in a thermostated, double wall glass chamber (room temperature) and irradiated with a 400 W Osram quartz halogen bulb at $2700 \mu\text{mol m}^{-2} \text{s}^{-1}$ PAR. In preliminary trials, the time required to obtain a sustained photoinhibitory reduction in F_v/F_m was established for each taxon. Thereafter, the discs were darkened for 25 min and F_v/F_m was measured again. Photosynthetically

Results

Young red leaves of *Rosa* sp. and *R. communis* had *ca.* 50 % of the Chl content of green mature leaves while their anthocyanin contents were 27- and 21-fold higher, respectively (Table 1). Microscopical observations in leaf cross-sections revealed that anthocyanins were located in the epidermis of both the adaxial and abaxial surfaces (not shown). Concerning Chls, no significant differences

active radiation (PAR) at disc level was measured with a Li-190 quantum sensor (LI-Cor, Lincoln, NE, USA). To avoid slight ($\pm 5\%$) differences of PAR within the irradiation field, the dishes were rotated frequently.

Statistics: Significance of differences in the measured parameters between young and mature leaves was assessed through ANOVA tests by using the SPSS 9.0 statistical package.

were found between young (anthocyanic) and mature leaves, when their contents were expressed on a Chl basis (Fig. 1A,C). The only exception was lutein in *R. communis*, where young leaves had a *ca.* 40 % greater content. Since the expression of xanthophyll cycle-dependent photodissipative capacity on a Chl basis may be misleading (see Discussion), we present in Fig. 1B,D

Table 1. Chlorophyll (Chl) and anthocyanin contents [$\mu\text{mol m}^{-2}$] in young and mature leaves of *Rosa* sp. and *Ricinus communis*. Means \pm SE from 12 (*Rosa* sp.) or 7 (*R. communis*) independent extractions. Peak absorbances for anthocyanins were at 528 nm for *Rosa* sp. and at 529 nm for *R. communis*.

	<i>Rosa</i> sp. young	<i>Rosa</i> sp. mature	<i>R. communis</i> young	<i>R. communis</i> mature
Chl (a+b)	235 ± 19	505 ± 40	198 ± 22	402 ± 30
Anthocyanins	5874 ± 563	215 ± 23	3985 ± 1005	193 ± 64

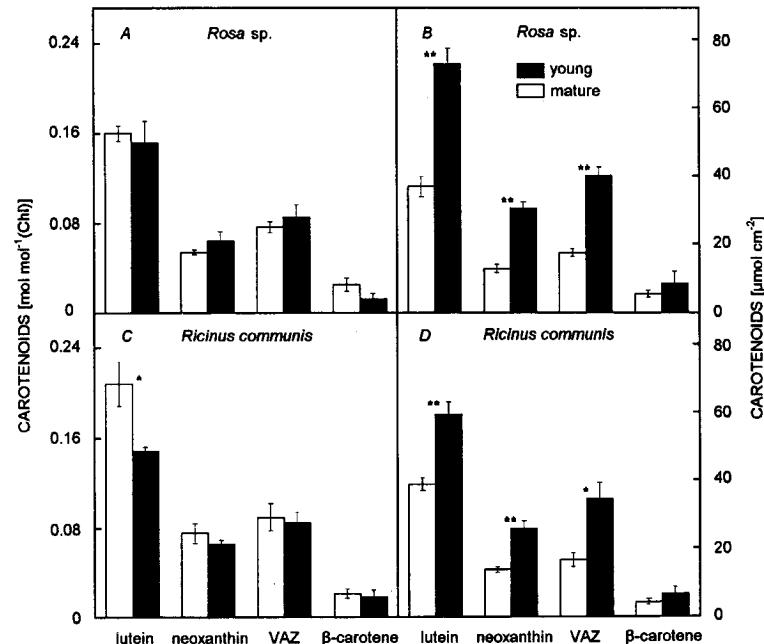


Fig. 1. Carotenoid contents of young and mature leaves of *Rosa* sp. and *Ricinus communis*, expressed on chlorophyll (A, C) and leaf area (B, D) basis. Means \pm SE from 12 (*Rosa* sp.) and 7 (*R. communis*) independent extractions. The asterisks denote statistically significant differences at $p < 0.01$ (**) and $0.01 < p < 0.05$ (*).

the results on a leaf area basis as well. In this case, contents of all Cars (with the exception of β -carotene) were significantly (about two-fold) greater in mature leaves. The same trend was observed in β -carotene, yet the differences were not statistically significant due to the high variation of the results.

Differences in the sensitivity to photoinhibition were evident between the two taxa, with *R. communis* being much more sensitive. Yet, in both cases, the young, red leaves exhibited considerable tolerance compared to green, mature leaves (Fig. 2A,B). Thus, after 2.5 h at high irradiance, the maximum PS2 photochemical efficiency in *R. communis* dropped to 66 and 34 % of the initial values for young and mature leaves, respectively. Corresponding values in *Rosa* sp. were 75 and 55 %, but after 8 h of photoinhibitory irradiation.

Discussion

Our results showed that young red and mature green leaves of both species had similar contents of almost all Cars, including the xanthophyll cycle components, when these contents were expressed on a Chl basis. This contrasts the results of Krause *et al.* (1995) comparing the same parameters in green young and mature leaves of three tropical forest trees. In that case, the molar ratio of VAZ to Chl was significantly higher in young leaves. In an additional study with the CAM plant *Cotyledon orbiculata* a similar result was found (Barker *et al.* 1997), although the young leaves were anthocyanic. However, in that case the photo-protection offered to young leaves by anthocyanins was gradually replaced during leaf development by a highly reflective wax layer, reducing radiation absorptance in mature leaves. Such a replacement of external photoprotective mechanisms was not evident in *Rosa* sp. and *R. communis*, as shown by absorptance measurements (see next paragraph). Therefore, we may conclude that the need for high, xanthophyll cycle-dependent, photodissipative capacity in young leaves (Krause *et al.* 1995) can be alleviated in anthocyanic leaves (present study) due to less Chl excitation pressure.

The expression of VAZ on a Chl basis follows the tacit assumption that the capacity of the xanthophyll pool should be correlated to the amount of potential targets for photosensitized action, *i.e.* Chl molecules (Adams and Demmig-Adams 1994). However, the amount of Chls may not necessarily reflect the actual potential of a leaf for photon capture. The complex internal architecture of a leaf results in the elongation of the radiation path, increasing the possibility of photon absorption even at low Chl content (Vogelmann 1993). For example, a *ca.* 50 % drop in Chl content results in a *ca.* 10 % reduction of leaf absorptance (Abadía *et al.* 1999). In our case, a 2-fold higher Chl content in mature leaves of both species corresponds to a 12 % increase in leaf absorptance at 680 nm (results not shown). At this wavelength, leaf optical prop-

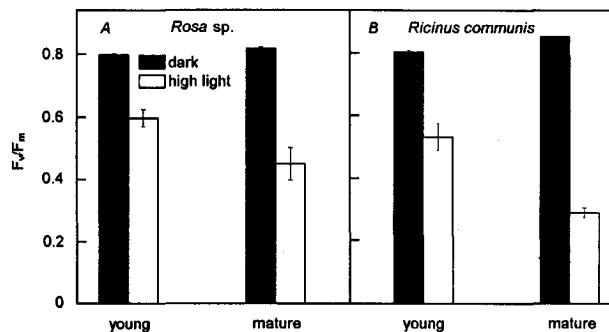


Fig. 2. Photosystem 2 photochemical efficiency (F_v/F_m) of pre-darkened young and mature leaves of *Rosa* sp. (A) and *Ricinus communis* (B) under photoinhibitory conditions (8.0 and 2.5 h at $2700 \mu\text{mol m}^{-2} \text{s}^{-1}$ PAR, respectively). Means \pm SE from 30 leaves (10 leaves per individual).

erties are not influenced by the presence of anthocyanins (Neill and Gould 1999). Accordingly, the expression of the xanthophyll cycle pool on an absorbed photon base may be more appropriate (Bisba *et al.* 1997). However, this expression can be highly misleading in anthocyanic leaves, where considerable part of their absorptance in the green and yellow part of the spectrum is due to non-photosynthetic anthocyanins (Neill and Gould 1999). In order to bypass this methodological difficulty, we may argue as follows: since the capacity for photon absorption of a leaf area is reduced by 10 % when Chl content is 50 % lower, a corresponding 10 % reduction in the area-based xanthophyll cycle pool size could be expected, if the photodissipative capacity of the leaf is to be maintained at the same level. However, our results show that young red leaves of both tested species had considerably lower area-based xanthophyll cycle pool sizes (57 % for *Rosa* sp. and 52 % for *R. communis*, Fig. 1B,D) and, accordingly, lower VAZ per absorbed photon compared to mature leaves. Recalculating the results for the non-anthocyanic plants studied by Krause *et al.* (1995) on a leaf area basis, it comes out that the xanthophyll cycle pools of young leaves were slightly (*ca.* 21 %) lower in two cases and considerably (48 %) lower in the third case, while corresponding values for Chls were 51, 55, and 42 %, respectively. We may finally conclude that young anthocyanic leaves may be deficient in the xanthophyll cycle-dependent photodissipative capacity when compared with their green counterparts.

Although the photodissipative potential of young anthocyanic leaves was probably low, these leaves were more tolerant to photoinhibitory conditions than mature, anthocyanin-less leaves. This is again in contrast to what has been found up to now with green young leaves of other species (Krause *et al.* 1995, Barker *et al.* 1997, Ishida *et al.* 2001). We may therefore correlate the presence of anthocyanins in young leaves with tolerance to

photoinhibition, apparently afforded through attenuation of visible radiation. This temporary anthocyanic screen may give the time needed for a young chloroplast to mature, avoiding the perturbations of excess radiation. We have to admit, however, that the PAR values used in our laboratory experiments were higher than mid-day rates

under clear sky conditions. Work is needed in the field to examine if the risk of photoinhibition is indeed lower in young anthocyanic leaves under natural conditions, where, apart from high irradiance stress, other stresses may co-occur.

References

Abadía, J., Morales, F., Abadía, A.: Photosystem II efficiency in low chlorophyll, iron-deficient leaves. – *Plant Soil* **215**: 183-192, 1999.

Adams, W.W., III, Demmig-Adams, B.: Carotenoid composition and down regulation of photosystem II in three conifer species during the winter. – *Physiol. Plant.* **92**: 451-458, 1994.

Barker, D.H., Seaton, G.G.R., Robinson, S.A.: Internal and external photoprotection in developing leaves of the CAM plant *Cotyledon orbiculata*. – *Plant Cell Environ.* **20**: 617-624, 1997.

Bisba, A., Petropoulou, Y., Manetas, Y.: The transiently pubescent young leaves of plane (*Platanus orientalis* L.) are deficient in photodissipative capacity. – *Physiol. Plant.* **101**: 373-378, 1997.

Burger, J., Edwards, G.E.: Photosynthetic efficiency, and photodamage by UV and visible radiation, in red versus green leaf *Coleus* varieties. – *Plant Cell Physiol.* **37**: 395-399, 1996.

Chalker-Scott, L.: Environmental significance of anthocyanins in plant stress responses. – *Photochem. Photobiol.* **70**: 1-9, 1999.

Choudhury, N.K., Behera, R.K.: Photoinhibition of photosynthesis: Role of carotenoids in photoprotection of chloroplast constituents. – *Photosynthetica* **39**: 481-488, 2001.

Demmig-Adams, B., Adams, W.W., III, Logan, B.A., Verhoeven, A.S.: Xanthophyll cycle-dependent energy dissipation and flexible photosystem II efficiency in plants acclimated to light stress. – *Aust. J. Plant Physiol.* **22**: 249-260, 1995.

Demmig-Adams, B., Gilmore, A.M., Adams, W.W., III: *In vivo* functions of carotenoids in higher plants. – *FASEB* **10**: 403-412, 1996.

Dodd, I.C., Critchley, C., Woodall, G.S., Stewart, G.R.: Photoinhibition in differently colored juvenile leaves of *Syzygium* species. – *J. exp. Bot.* **49**: 1437-1445, 1998.

Feild, T.S., Lee, D.W., Holbrook, N.M.: Why leaves turn red in autumn. The role of anthocyanins in senescent leaves of red-osier dogwood. – *Plant Physiol.* **127**: 566-574, 2001.

Gould, K.S., Markham, K.R., Smith, R.H., Goris, J.J.: Functional role of anthocyanins in the leaves of *Quintinia serrata* A. Cunn. – *J. exp. Bot.* **51**: 1107-1115, 2000.

Harborne, J.B.: Function of flavonoids in plants. – In: Goodwin, T.W. (ed.): *Chemistry and Biochemistry of Plant Pigments*. Pp. 736-778. Academic Press, London 1976.

Hoch, W.A., Zeldin, E.L., McCown, B.H.: Physiological significance of anthocyanins during autumnal leaf senescence. – *Tree Physiol.* **21**: 1-8, 2001.

Ireland, C.R., Baker, N.R., Long, S.P.: The role of carbon dioxide and oxygen in determining chlorophyll fluorescence quenching during leaf development. – *Planta* **165**: 477-485, 1985.

Ishida, A., Nakano, T., Uemura, A., Yamashita, N., Tanabe, H., Koike, N.: Light-use properties in two sun-adapted shrubs with contrasting canopy structures. – *Tree Physiol.* **21**: 497-504, 2001.

Krause, G.H., Virgo, A., Winter, K.: High susceptibility to photoinhibition of young leaves of tropical forest trees. – *Planta* **197**: 583-591, 1995.

Krol, M., Gray, G.R., Hurry, V.M., Öquist, G., Malek, L., Huner, N.P.A.: Low-temperature stress and photoperiod affect an increased tolerance to photoinhibition in *Pinus banksiana* seedlings. – *Can. J. Bot.* **73**: 1119-1127, 1995.

Kyparissis, A., Petropoulou, Y., Manetas, Y.: Summer survival of leaves in a soft-leaved shrub (*Phlomis fruticosa* L., Labiate) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. – *J. exp. Bot.* **46**: 1825-1831, 1995.

Lichtenthaler, H.K., Wellburn, A.R.: Determinations of total carotenoids and chlorophylls *a* and *b* of leaf extracts in different solvents. – *Biochem. Soc. Trans.* **11**: 591-592, 1983.

Long, S.P., Humphries, S., Falkowski, P.G.: Photoinhibition of photosynthesis in nature. – *Annu. Rev. Plant Physiol. Plant mol. Biol.* **45**: 633-662, 1994.

Mancinelli, A.L., Yang, C.-Ph., Lindquist, P., Anderson, O.R., Rabino, I.: Photocontrol of anthocyanin synthesis. III. The action of streptomycin on the synthesis of chlorophyll and anthocyanin. – *Plant Physiol.* **55**: 251-257, 1975.

Manetas, Y., Grammatikopoulos, G., Kyparissis, A.: The use of the portable, non-destructive, SPAD-502 (Minolta) chlorophyll meter with leaves of varying trichome density and anthocyanin content. – *J. Plant Physiol.* **153**: 513-516, 1998.

Mendez, M., Gwynn-Jones, D., Manetas, Y.: Enhanced UV-B radiation under field conditions increases anthocyanin and reduces the risk of photoinhibition but does not affect growth in the carnivorous plant *Pinguicula vulgaris*. – *New Phytol.* **144**: 275-282, 1999.

Merzlyak, M.N., Chivkunova, O.B.: Light-stress induced pigment changes and evidence for anthocyanin photo-protection in apples. – *J. Photochem. Photobiol. B* **55**: 155-163, 2000.

Miranda, V., Baker, N.R., Long, S.P.: Limitations of photosynthesis in different regions of the *Zea mays* leaf. – *New Phytol.* **89**: 179-190, 1981.

Murray, J.R., Hackett, W.P.: Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase *Hedera helix* L. – *Plant Physiol.* **97**: 343-351, 1991.

Neill, S., Gould, K.S.: Optical properties of leaves in relation to anthocyanin concentration and distribution. – *Can. J. Bot.* **77**: 1777-1782, 1999.

Šesták, Z., Tichá, I., Čatský, J., Solárová, J., Pospíšilová, J., Hodářová, D.: Integration of photosynthetic characteristics during leaf development. – In: Šesták, Z. (ed.): *Photosynthesis During Leaf Development*. Pp. 263-286. Academia, Praha; Dr W. Junk Publ., Dordrecht – Boston – Lancaster 1985.

Smillie, R.M., Hetherington, S.E.: Photoabatement by

anthocyanin shields photosynthetic systems from light stress.
– *Photosynthetica* **36**: 451-463, 1999.

Smirnoff, N.: The role of active oxygen in the response of plants to water deficit and desiccation. – *New Phytol.* **125**: 27-58, 1993.

Swain, T.: Flavonoids. – In: Goodwin, T.W. (ed.): *Chemistry and Biochemistry of Plant Pigments*. Pp. 166-205. Academic Press, London 1976.

Thayer, S.S., Björkman, O.: Leaf xanthophyll content and composition in sun and shade determined by HPLC. – *Photosynth. Res.* **23**: 331-343, 1990.

Vogelmann, T.C.: Plant tissue optics. – *Annu. Rev. Plant Physiol. Plant mol. Biol.* **44**: 231-251, 1993.