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Interaction of cytakinins and abscisic acid
during regulation of stomatal opening in bean leaves
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Abstract

Effects of benzyladenine (BA) and abscisic acid (ABA) applied separately or simultaneously on parameters of gas ex-
change of Phaseolus vulgaris L. leaves were studied. In the first two experimental sets, 100 uM ABA and 10 uM BA
were applied to plants sufficiently supplied with water. Spraying of leaves with ABA decreased stomatal conductance
(gs) and in consequence transpiration rate (E) and net photosynthetic rate (Py) already 1 h after application, but 24 h after
application the effect almost disappeared. 10 uM BA slightly decreased gas exchange parameters, but in simultaneous
application with ABA reversed the effect of ABA. Immersion of roots into the same solutions markedly decreased gas
exchange parameters and 24 h after ABA application the stomata were completely closed. The effect of ABA was ame-
liorated by simultaneous BA application, particularly after 1-h treatment. In the third experimental set, plants were pre-
treated by immersing roots into water, 1 uM BA, or 100 pM ABA for 24 h and then the halves of split root system were
dipped into different combinations of 1 pM BA, 100 pM ABA, and water. In plants pre-treated with ABA all gas
exchange parameters were small and they did not differ in plants treated with H,0+H,0, H,O+BA, or BA+BA. In plants
pre-treated with BA or H,O, markedly lower values of Py were found when both halves of roots were immersed in
ABA. Further, the effects of pre-treatment of plants with water, 1 uM BA, 100 uM ABA, or ABA+BA on the develop-
ment of water stress induced by cessation of watering and on the recovery after rehydration were followed. ABA mark-
edly decreased gas exchange parameters at the beginning of the experiment, but in its later phase the effect was compen-
sated by delay in development of water stress. BA also delayed development of water stress and increased Py in water-
stressed leaves. BA reversed the effect of ABA at mild water stress. Positive effects of BA and ABA pre-treatments
were observed also after rehydration.

Additional key words: benzyladenine; net photosynthetic rate; Phaseolus vulgaris; stomatal conductance; transpiration rate; water
stress.

Introduction

Regulation of stomatal conductance (g) is the main
mechanism by which plants control gas exchange and
leaf temperature. During water stress stomata respond to
hydraulic and chemical signals (e.g. Tardieu and Davies
1993). Abscisic acid (ABA) synthesised in the roots un-
der water stress and transported to the leaves may act as a
root-to-shoot chemical signal of water stress conditions
and, together with ABA synthesised in the leaves them-
selves and released from physiologically inactive ABA-
glucose conjugates, induce stomatal closure (for recent
reviews see, e.g., Assmann and Armstrong 1999, Blatt
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2000, Rock 2000, Ng et al. 2001, Schroeder et al. 2001,
Wilkinson and Davies 2002). ABA compartmentation in
different tissues is largely caused by changes in pH (e.g.
Sauter et al. 2001). Decisive for stomatal closure is ABA
content in the vicinity of guard cells which depends not
only on ABA supply, but also on changes in water con-
tent (Zhang et al. 2001, Zhang and Outlaw 2001a,b).
However, it is not reasonable to deny participation of
other phytohormones in chemical signalling of water
stress conditions (for recent reviews, see Naqvi 1999,
PospiSilové et al. 2000, Pospifilova 2003). In contrast to

-benzyladenine; CK — cytokinin; E - transpiration rate; g; — stomatal conductance; Py —
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ABA, -our knowledge of the stress-induced changes in
contents of other phytohormones and their possible direct
effects on stomata and interactions with ABA is only
fragmentary. Cytokinins (CKs) are often considered ABA
antagonists in many processes including the regulation of
stomatal opening (e.g. Thimann 1992).

In water stressed plants, a decreased content of CKs
was found in rice (Bano et al. 1993), alfalfa (Goicoechea
et al. 1995, 1997), wheat (Teplova ef al. 1999), grapevine
(Stoll et al. 2000), and severely water-stressed sunflower
(Shashidhar et al. 1996). CK content was not signifi-
cantly changed in apoplastic solution of water-stressed
cotton and sunflower (Hartung et a/. 1992, Masia et al.
1994), and in the xylem sap of Prunus dulcis (Fusseder
et al. 1992).

CKs may induce stomatal opening but the effects are
species specific and depend on CK type, concentration,
and method of application. The increase in transpiration
rate (E) or stomatal opening by CKs was mentioned in
leaves of Anthephora, Avena, Brassica, Commelina,
Helianthus, Hordeum, Kalanchoé, Melampyrum, Saccha-
rum, Tradescantia, Triticum, and Vigna (Incoll and Jewer
1987, Santakumari and Fletcher 1987, Meinzer et al.
1991, Badenoch-Jones et al. 1996, Lechowski 1997,
Pharmawati et al. 1998, Gupta et al. 1999) but the con-
sistent stimulation of g; or E was not observed in Beta,
Commelina, Gossypium, Linum, Pisum, Tridax, Triticum,
Vicia, and Zea (Radin et al. 1982, Incoll and Jewer 1987,
Radin and Hendrix 1988, Driige and Schénbeck 1992,
Badenoch-Jones et al. 1996, Catsky eral. 1996,
Pospisilové et al. 2001, Vomécka and Pospisilova 2003).
In Digitalis, Nicotiana, Phaseolus, and Vicia low CK
concentrations slightly stimulated g, and E but higher
concentration mostly inhibited them (Morsucci et al.
1991, 1992, Diettrich et al. 1992, Pospisilova et al. 1993,
2001, Rulcova and PospiSilova 2001). In epidermal strips
or leaf fragments of Commelina, CKs decreased stomatal
opening (Blackman and Davies 1983). CKs can also
delay stomatal closure induced by ABA, which was
observed in Gossypium, Linum, and Zea (Radin et al.
1982, Blackman and Davies 1984, Radin and Hendrix
1988, Driige and Schénbeck 1992).

Materials and methods

Plants and cultivation: Seedlings of French bean
(Phaseolus vulgaris L. cv. Jantar) were grown in pots
with coarse sand and nutrient solution at a 16-h photo-
period, irradiance of 150 umol m? s, day/night tempera-
ture of 25/20 °C, and relative humidity of about 50 %.
Air temperature and humidity were measured with the
JUMO Humitherm TDAc-70 (M.K. Juchheim, Fulda,
Germany). Irradiance was measured with the L/ /85B
radiometer with a quantum sensor (Li-COR, Lincoln,
USA).

Treatments: To distinguish between direct effects and
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ABA can regulate stomatal opening by changing
various parameters: (/) Osmotic potential of guard cells
which involves both an inhibition of the channels allow-
ing K* entry and an activation of the channels determin-
ing release of K™ and those determining release of anions.
Ca®" is a second messenger in some, but not all, of the
ABA-induced changes in guard cell ion channels. ABA-
induced inactivation of the plasmalemma inward
K" channels is usually Ca®* mediated, whereas ABA-
induced activation of the plasmalemma outward K*
channels is Ca®" independent (e. g. MacRobbie 1997,
Allen et al. 1998, Leung and Giraudat 1998, Assmann
and Shimazaki 1999, Lemtiri-Chlieh et al. 2000). In the
latter case, pH changes seem to be important (Allen et al.
1998, Leung and Giraudat 1998, Blatt 2000). (2)
Mechanical properties of guard cells may be induced by
reversible reorganisation of actin filaments and cortical
microtubules (Jiang et al. 1996, Eun and Lee 1997). (3)
Gene expression may lead to changes in content of water-
transport proteins, ion-transport proteins, or proteins
involved in carbon metabolism (Webb ef a/. 2001).

The mechanism of CK action on guard cell might
involve direct induction of membrane hyperpolarization
by stimulation of electrogenic H'-pump, stimulation of
adenylate or guanylate cyclase activity, or interaction
with calcium-calmodulin system (Incoll efal. 1990,
Morsucci et al. 1991, Pharmawati et al. 1998). The inter-
nal calcium concentration might be a candidate for medi-
ating interactions between CKs and ABA (Hare er al.
1997). The antagonism between CKs and ABA may also
be the result of metabolic interactions: CKs share, at least
in part, a common biosynthetic origin with ABA (Cowan
et al. 1999).

The above survey of literature shows that it is not
possible yet to confirm or deny the hypothesis that an-
tagonistic effects of ABA and CKs can participate in
precise regulation of stomata opening. Therefore, the
central question to be examined in this paper is the rela-
tive effect of ABA and CKs alone and in different com-
binations on g;, and rates of transpiration and photosyn-
thesis of plants sufficiently supplied with water or during
development of water stress and subsequent rehydration.

interactions, benzyladenine (BA) and ABA were applied
separately or simultaneously. In the first two experimen-
tal sets, 100 uM ABA and 10 uM BA were applied to
plants sufficiently supplied with water. Different types of
application were used: in the first experimental set H,O,
BA, ABA, or BA+ABA were sprayed on leaves, while in
the second experimental set roots were immersed into
solutions of the same concentrations. Parameters of gas
exchange were measured 1 and 24 h after application.

In further experimental sets 1 pM BA was used be-
cause 10 pM concentration of BA seemed to be unneces-
sarily high for application to roots. In the third experi-
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mental set, plants were pre-treated by immersing roots
into water, 1 uM BA, or 100 uM ABA for 24 h. Then the
root system was split and halves of roots were immedi-
ately dipped in small vessels and treated by different
combinations of 1 uM BA, 100 uM ABA, and H,O
(Table 1). Then both vessels together with a part of root
system overlapping the surface of solutions used were
wrapped in aluminium foil to be in darkness and to avoid
desiccation. Parameters of gas exchange were measured
2 h after splitting the roots.

Further, the effects of pre-treatment of plants with
water, 1 pM BA, 100 pM ABA, or combination of
100 uM ABA + 1 uM BA on the development of water
stress induced by cessation of watering and on the recov-
ery after rehydration was followed. Relative water .con-
tent (RWC) and gas exchange parameters were measured
immediately after application (0 d), during mild water
stress (3 and 4 d), during severe water stress (7 and 8 d),
and after rehydration (2 d).

Results

Effects of ABA, BA, and ABA+BA on plants suffi-
ciently supplied with water: Gas exchange parameters
of leaves of plants sufficiently supplied with water were
differently affected by growth regulators according to the
method of application. Spraying of leaves with water
slightly increased gas exchange parameters. 100 pM ABA
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Fig. 1. Net photosynthetic rate (Py), transpiration rate (E), and
stomata! conductance (g;) in primary bean leaves 1 and 24 h
after spraying with H,O (control), 100 uM ABA, 10 uM BA, or
combination of 100 pM ABA + 10 uM BA (A+B). Means
+ SE, n = 18 (S — initial values before treatments).

Methods determining water relations and photosyn-
thetic parameters: Net photosynthetic rate (Py), transpi-
ration rate (E), and g; were measured on attached leaves
using a gas exchange system (LCA-4, ADC Bio Scientific,
Hoddesdon, UK) with leaf chamber (LC4/PLC4BT-1/E)
at temperature of 25 °C, irradiance (400-700 nm) of 750
umol m? s provided by four Argaphoto-BM (Philips,
Eindhoven, The Netherlands) lamps cooled by a water filter,
relative humidity of 50 %, and CO, concentration of
350 pumol mol™'. Primary or secondary leaves were used
in the stage of maximum or near maximum Py. RWC was
measured gravimetrically in leaf discs (0.5 cm?®) water-
saturated by immersing into holes of fully moistened
polyurethane foam under dark according to Catsky
(1960).

Statistics: For each parameter a mean and a standard
error of mean were calculated and the statistical signifi-
cance of differences between control and treated plants
were evaluated by:the Student's #-test.

markedly decreased g; and in consequence £ and Py 1 h
after application, but 24 h after application the effect
almost disappeared. 10 pM BA slightly decreased gas
exchange parameters, but in simultaneous application
with ABA it reversed the effect of ABA (Fig. 1).

Dipping of roots into the same solutions markedly
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Fig. 2. Net photosynthetic rate (Py), transpiration rate (£), and
stomatal conductance (g,) in primary bean leaves 1 and 24 h
after immersion of roots into H,O (control), 100 uM ABA,
10 uM BA, or combination of 100 uM ABA + 10 uM BA
(A+B). Means * SE, n =12 (S - initial values of plants in sub-
strate).
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decreased gas exchange. In this application the concen-
trations of ABA and BA seemed to be unnecessarily high.
24 h after ABA application the stomata were completely
closed. The effect of ABA was ameliorated by simultane-
ous BA application, particularly after 1 h of treatment

(Fig. 2).

Effects of different combinations of ABA, BA, and
H,O0 applied to halves of split root system: When plants
were pre-treated by immersion of roots for 24 h in water
and then the root system was split and both halves dipped
in water, values of gas exchange parameters were nearly
the same as before pre-treatment (Table 1). In all other
combinations, Py, E, and g, were slightly decreased.
Markedly lower values of Py, E, and g, were found when
both halves of the roots were dipped in ABA (combina-
tion ABA+ABA), and values of E and g; were also low
when dipped into combination BA+BA. Values of gas
exchange parameter of plants pre-treated with BA were
mostly slightly lower than those of plants pre-treated with
water. Markedly decreased Py was observed in combina-
tions ABA+ABA and ABA+BA. However, E and g, were
similar in all combinations used. In plants pre-treated
with ABA, Py, E, and g; were low and they did not differ
in plants treated with HO+H,0, H,O+BA, or BA+BA
(Table 1).

Effect of pre-treatment of plants with ABA, BA, or
ABA+BA on development of water stress and subse-
quent recovery: Pre-treatment of plants with 1 pM BA,
‘100 uM ABA, or combination of both affected the devel-
opment of water stress and subsequent rehydration. RWC
in control plants markedly decreased from day 7 after
cessation of watering, when also visible wilting occurred.
On day 2 after rehydration RWC did not reach the initial
value. Application of ABA and BA delayed development
of water stress and in consequence recovery after rehy-
dration was improved. Simultaneous application
(ABA+BA) was less effective in amelioration of water
stress but also improved rehydration (Fig. 3).

Stomatal conductance markedly decreased during
water stress in all plants and after eight days stomata
were completely closed. The recovery was incomplete,
which indicated occurrence of relatively severe water
stress. ABA decreased g, immediately after application,
but changes from day 3 to day 7 were small. The de-
creased g, was the reason for delay in water stress devel-
opment. Positive effects of BA were found on day 4 and
after rehydration. BA reversed the effect of ABA on
day 3 (Fig. 3).

Transpiration rate decreased during water stress and
slightly increased after rehydration. On day 8 transpira-
tion. was cuticular because the stomata were closed. ABA
markedly decreased E on days 3 and 4. Further, the effect
was compensated by a delay in development of water
stress. Positive effects of BA were observed on days 3, 4,
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and 7 and after rehydration. BA reversed the effect of
ABA on day 3 (Fig. 3).

Py was less affected by water stress-induced decrease
in g, than E. Water stress was not so severe to induce
changes in biochemistry of photosynthesis. This was
shown by parallel measurements of chlorophyll fluores-
cence (results not shown). ABA decreased Py on days 3
and 4. However, because of the delay in the development
of water stress, Py on day 8 and after rehydration was
higher in ABA-pre-treated plants than in control plants.
Positive effects of BA were observed on days 4, 7, and 8
and after rehydration. BA reversed the effect of ABA on
day 3 (Fig. 3).

As a result of pre-treatment-induced changes in de-
velopment of water 'stress, the relationships between
RWC and g;, E, or Py were not markedly affected by pre-
treatment of plants (values not shown).
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Fig. 3. Effect of pre-treatment with 1 pM BA, 100 uM ABA, or
combination of 100 uM ABA + 1 pM BA (A+B) added to the
substrate on development of water stress in primary bean leaves
(3-8 d after cessation of watering) and subsequent rehydration
(2 d) characterised by changes in relative water content (RWC),
stomatal conductance (g,), transpiration rate (E), and net photo-
synthetic rate (Py). Means = SE, n = 12. s-d = days during
stress; r-d = days during rehydration.
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Table 1. Bean plants were pre-treated by immersion of roots either in water or 1 pM BA or 100 pM ABA. After 24 h the root system
was split into two halves which were immersed in different combinations of H,0, BA, and ABA and gas exchange parameters were
measured after 2 h. Net photosynthetic rate (Py), transpiration rate (£), and stomatal conductance (g,) of plants before pre-treatment
were 8.40 umol m™ 5™, 1.29 mmol m? 5™, and 0.09 mol m? 5™, respectively (in plants pre-treated with ABA only combinations
which could re-open the stomata were used). Means + SE, n = 18, * differences significant at p < 0.05 according to -test.

Pretreatment —24 h Treatment—2h

Py[umol m?s']  E[mmo! m? s

g;[molm?s™]

H,0 H,0+H,0 8.36+£0.34 1.31 £0.08 0.101 £0.013
H,0+BA 6.20 + 0.43* 1.19+0.14 0.092 £ 0.019
H,0+ABA 7.45+0.42 1.1210.12 0.063 +£0.011*
BA+BA 7.07 £ 0.40* 0.92 +0.12% 0.043 £ 0.006*
BA+ABA 6.97 £ 0.36* 1.09+0.10 0.062 + 0.010*
ABA+ABA 4.52 +0.47* 0.87+£0.12% 0.042 £ 0.007*
BA H,0+H,0 6.99 + 0.54* 093+0.11* 0.043 + 0.005*
H,O+BA 5.90 + 0.40* 0.74 £0.11* 0.038 + 0.006%
H,O+ABA 5.34 £0.16* 1.12 £ 0.07 0.051 £ 0.005*
BA+BA 6.00+0.14* 1.11+£0.12 0.054 £ 0.010%
BA+ABA 4.82 +0.42* 1.07+£0.20 0.052£0.011*
ABA+ABA 4.54 £ 0.42* 0.88 £ 0.15% 0.044 £ 0.010%
ABA H,0+H,0 3.49+£0.55* 0.61£0.14* 0.028 + 0.008*
H,O0+BA 3.65 £ 0.52* 0.55+0.13* 0.024 £ 0.007*
BA+BA 3.46 £ 0.54* 0.63 £0.10* 0.027 £ 0.006*
Discussion

Effects of ABA on gas exchange parameters: In
agreement with the literature, 100 uM ABA in leaves
sufficiently supplied with water markedly decreased g,
and in consequence E and Py. However, the effect on
plants by spraying on leaves was only short-term and less
efficient than dipping of roots into the solutions of the
same concentrations. This was probably because of re-
stricted ABA uptake in the former case as a result of low
permeability of the cuticle and is probably one of the
reasons why application of ABA into the transpiration
stream has usually been used for simulation of effects of
water stress (e.g. Correia and Pereira 1995, Heckenberger
et al. 1996). However, spraying of ABA on sorghum
leaves effectively reduced E (Xu et al. 1994).

In agreement with the above-mentioned experiments,
pre-treatment of plants by immersing roots into 100 uM
ABA for 24 h significantly decreased gas exchange pa-
rameters of plants with split-root systems and during the
subsequent two hours stomata in plants with roots treated
with water, BA, or combination of both did not fully re-
open.

Leaf contents of endogenous ABA increased during
development of water stress induced by cessation of
watering and pre-treatment of plants with 100 uyM ABA
further increased endogenous ABA content (Pospidilova
and Vagner 2002). This resulted in immediate decrease in
g, and £ and thus in delay of development of water stress
(Fig. 3). In addition, increased content of endogenous
ABA may increase root hydraulic conductivity (e.g
Zhang et al. 1995, Hose et al. 2000, 2002) which may

contribute to delay in water stress development. Retarda-
tion of development of water stress under drought by
ABA application has also been observed, e.g. in Hor-
deum, Pinus, Solanum, and Triticum (Mizrahi et al. 1974,
Sukumaran et al. 1975, Marshall er al. 1991, Nayyar and
Kaushal 2002). Consequently, g, in ABA-treated plants
was from day 4 to day 8 similar to that in the control
plants and Py on day 8 was even higher in ABA-treated
plants than in the controls (Fig. 3). Similarly in wheat
plants, ABA application during development of water
stress induced by polyethylene glycol 6 000 increased g,
and Py on days 4 and 6 after application (Nayyar and
Kaushal 2002). Amelioration of water stress improved
rehydration, and g, E, and Py of ABA-treated plants
were two days after rehydration higher than those of the
control plants.

Effect of BA on gas exchange parameters: Spraying of
leaves of plants sufficiently supplied with water with
10 uM BA did not markedly change gas exchange pa-
rameters, but dipping of roots into 10 pM BA decreased
them. Thus dipping of roots in BA solution was more
effective than spraying of leaves; this difference was
similar to that found with ABA. The 10 pM concentration
of BA was most likely unnecessarily high for application
to roots and later a lower concentration (1 pM) was used.
The results are in agreement with previous experiments
with water-stressed and re-hydrated bean plants (Rulcova
and PospiSilova 2001) where 1 pM BA applied to sub-
strate stimulated stomatal opening 72 h after application
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but 10 uM BA inhibited it. However, in previous experi-
ments with bean plants sufficiently supplied with water
(Pospisilova et al. 2001), 10 uM BA slightly stimulated
gas exchange parameters 1 h after application and de-
creased them only 24 h after application. Thus the effect
of BA on gas exchange parameters of bean plants de-
pends on application mode, time of observation of ef-
fects, plant age, and probably other factors, as was ob-
served, e.g, in Beta, Commelina, Gossypium, Linum,
Pisum, Tridax, Triticum, Vicia, and Zea (Radin et al.
1982, Incoll and Jewer 1987, Radin and Hendrix 1988,
Driige and Schonbeck 1992, Badenoch-Jones et al. 1996,

Catsky ez al. 1996, PospiSilové et al. 2001, Vomatka and\

PospiSilova 2003).

Interactions of BA and ABA during simultaneous
application of BA+ABA or during water stress: CKs
are often considered ABA antagonists. In bean plants
sufficiently supplied with water, 10 uM BA effectively
reversed the closing effect of ABA in both (leaf or root)
ways of application. In maize, CKs reversed ABA medi-
ated stomatal closure in both young and old leaves
(Blackman and Davies 1984). In flax, zeatin decreased
stomatal response to ABA (Driige and Schonbeck 1992).
In cotton, kinetin had little effect on stomatal response to
ABA in control plants, but it decreased stomatal response
to ABA in plants grown under nitrogen deficiency (Radin
et al. 1982, Radin and Hendrix 1988).

In plants pre-treated with water or BA, Py, E, and g,
were lower when the both halves of root system were
treated with ABA than if combinations H,O+ABA or
BA+ABA were used. However, the explanation may be
an interaction between BA and ABA, as well as the lower
ABA concentration in the vicinity of guard cells (dilution
of ABA solution delivered from the half of the roots
immersed in ABA by water or BA solution delivered
from the second half of the roots). The reduced values of
gas exchange parameters after pre-treatment of roots in
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