

Interspecific differences of leaf gas exchange and water relations of three evergreen Mediterranean shrub species

A. BOMBELLI and L. GRATANI

Dipartimento di Biologia Vegetale, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy

Abstract

Leaf gas exchange and plant water relations of three co-occurring evergreen Mediterranean shrubs species, *Quercus ilex* L. and *Phillyrea latifolia* L. (typical evergreen sclerophyllous shrubs) and *Cistus incanus* L. (a drought semi-deciduous shrub), were investigated in order to evaluate possible differences in their adaptive strategies, in particular with respect to drought stress. *C. incanus* showed the highest annual rate of net photosynthetic rate (P_N) and stomatal conductance (g_s) decreasing by 67 and 69 %, respectively, in summer. *P. latifolia* and *Q. ilex* showed lower annual maximum P_N and g_s , although P_N was less lowered in summer (40 and 37 %, respectively). *P. latifolia* reached the lowest midday leaf water potential (Ψ_l) during the drought period (-3.54 ± 0.36 MPa), 11 % lower than in *C. incanus* and 19 % lower than in *Q. ilex*. Leaf relative water content (RWC) showed the same trend as Ψ_l . *C. incanus* showed the lowest RWC values during the drought period (60 %) while they were never below 76 % in *P. latifolia* and *Q. ilex*; moreover *C. incanus* showed the lowest recovery of Ψ_l at sunset. Hence the studied species are well adapted to the prevailing environment in Mediterranean climate areas, but they show different adaptive strategies that may be useful for their co-occurrence in the same habitat. However, *Q. ilex* and *P. latifolia* by their water use strategy seem to be less sensitive to drought stress than *C. incanus*.

Additional key words: adaptive strategies; *Cistus incanus*; leaf water potential; net photosynthetic rate; *Phillyrea latifolia*; *Quercus ilex*; relative water content; stomatal conductance; water stress.

Introduction

Since under Mediterranean climate plant species are subjected to prolonged periods of drought, characterised by high air temperatures, high irradiance, and high vapour pressure deficit, Mediterranean plant species have developed both morphological and physiological adaptations to water stress (Dickson and Tomlinson 1996). Nevertheless, the degree of adaptation to drought may vary considerably within species (Torrecillas *et al.* 1996). Morphological adaptations involve leaf protective structures (*i.e.* hairs, thick cuticle, sclerenchymatic cells), steep leaf inclination, high leaf thickness, and reduced leaf surface area (Castro-Díez *et al.* 1998, Karabourniotis 1998, Gratani and Bombelli 2000). All these features improve plant drought resistance decreasing photochemical damages of the photosynthetic system and reducing transpiration rates (E) by lowering leaf temperature (T_l) under water stress (Kao and Forseth 1992, Werner *et al.* 1999). Physiological adaptations involve regulation of plant

water status by stomatal control of leaf gas exchange (Faria *et al.* 1998, Jones 1998, Tognetti *et al.* 2000) and osmotic adjustment (Richter and Kikuta 1989, Scotti Campos *et al.* 1999, Sánchez-Blanco *et al.* 2002).

Performance under stress cannot be predicted from performance in non-stress conditions (Ivandic *et al.* 2000): as drought stress increases, stomatal conductance (g_s), net photosynthetic rate (P_N), leaf water potential (Ψ_l), and relative water content (RWC) decrease markedly (Grammatikopoulos 1999, Ashraf *et al.* 2001, Leidi 2002) and biochemical limitations of carbon gain appear (Angelopoulos *et al.* 1996, Tezara *et al.* 1999, Castillo *et al.* 2002).

Leaf water relations data may provide a useful indication of the capacity of species to maintain growth, gas exchange, and water use during summer drought (White *et al.* 2000). Knowledge of eco-physiological responses to water stress of different species could contribute to

Received 7 April 2003, accepted 14 August 2003.

Fax +39 06 49912358; e-mail: antonio.bombelli@uniroma1.it

Abbreviations: E = leaf transpiration rate; g_s = stomatal leaf conductance to water vapour diffusion; PAR = photosynthetically active radiation; P_N = net photosynthetic rate; RWC = relative water content; T_l = leaf temperature; VPD = leaf to air vapour pressure deficit; WUE = instantaneous water use efficiency; Ψ_l = leaf water potential; Ψ_m = minimum leaf water potential; Ψ_{pd} = predawn leaf water potential; Ψ_s = sunset leaf water potential.

better management of natural ecosystems especially in Mediterranean region where drought is an actual problem. In this context, the aim of this study was to analyse leaf gas exchange and plant water relations of three evergreen Mediterranean shrub species: *Quercus ilex*, *Phillyrea latifolia*, and *Cistus incanus* to test the following hypotheses: (1) In different environmental conditions interspecific differences in leaf traits may change during

the year; (2) species co-occurrence in the same habitat is possible by different adaptive strategies reducing the use of limiting resources, particularly water, during summer drought. The choice of plant species was based on differences in morphological and physiological traits of *Q. ilex* and *P. latifolia* (typical evergreen sclerophyllous shrub species) and *C. incanus* (a drought semi-deciduous shrub species).

Materials and methods

Study area and climate: The study was conducted in the Mediterranean maquis developing along the coast near Rome, in the Castelporziano Estate (41°45'N; 12°26'E). The area's climate was of Mediterranean type. Most (67 %) of its annual rainfall (726 mm) was distributed in autumn-winter (Table 1). Dry period was from mid-May to the end of August (11 % of total annual rainfall); air

humidity reached the minimum value in July (67.5 %) (data by the Castelporziano Meteorological Station, 1987-1999, Table 1). Soil water content (percentage ratio of water mass per dry soil mass) was in the range 0.5-8.0 % during the year, the minimum occurring in August and the maximum in December (Gratani 1994).

Table 1. Monthly average minimum air temperature (T_{\min}), monthly average maximum air temperature (T_{\max}), monthly average air temperature (T_m), monthly average air humidity (H), and total monthly rainfall (R) for the period 1987-1999 and for the study period (1999). Data of the Meteorological Station of Castelporziano, Rome.

	Average 1987-1999					Study period (1999)				
	T_{\min} [°C]	T_{\max} [°C]	T_m [°C]	H [%]	R [mm]	T_{\min} [°C]	T_{\max} [°C]	T_m [°C]	H [%]	R [mm]
Jan	4.4	13.6	9.0	78.9	51	3.8	13.7	8.8	78.5	33
Feb	3.9	13.9	8.9	77.3	49	1.6	11.8	6.7	78.8	30
Mar	5.8	15.8	10.8	72.4	44	6.0	14.9	10.5	79.0	56
Apr	8.0	17.8	12.9	76.5	78	9.0	18.3	13.7	81.6	64
May	11.8	22.3	17.1	73.0	33	13.5	23.6	18.6	81.8	23
Jun	14.7	26.3	20.5	71.0	35	15.4	27.6	21.5	69.9	21
Jul	17.7	30.0	23.8	67.5	12	17.8	29.8	23.8	76.4	8
Aug	18.5	30.8	24.7	68.6	19	19.3	31.0	25.2	69.1	17
Sep	15.7	26.9	21.3	76.1	62	17.0	27.2	22.1	75.5	121
Oct	12.8	22.6	17.7	78.7	145	13.0	23.0	18.0	84.8	77
Nov	8.4	17.1	12.7	80.3	111	8.0	17.2	12.6	81.5	178
Dec	5.4	13.6	9.5	79.5	87	5.3	13.3	9.3	81.6	90

Plants: All measurements were made on fully expanded leaves selected from the external portion of the crown of *Cistus incanus* L., *Phillyrea latifolia* L., and *Quercus ilex* L. shrubs (ten per species), representative of the population. Field measurements were made during the year 1999 on four sunny clear days, representative of the different seasons according to Infante *et al.* (1999): 21 January 1999 (winter), 19 April 1999 (spring), 21 July 1999 (summer), and 15 October 1999 (autumn).

Leaf gas exchange: Field measurements of leaf gas exchange were carried out during the day on twenty leaves of the selected species. Leaves were retained in their natural orientation during measurements. PAR [$\mu\text{mol}(\text{photon}) \text{ m}^{-2} \text{ s}^{-1}$], P_N [$\mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$], T_l [°C], g_s [$\text{mmol}(\text{H}_2\text{O}) \text{ m}^{-2} \text{ s}^{-1}$], and E [$\text{mmol}(\text{H}_2\text{O}) \text{ m}^{-2} \text{ s}^{-1}$] were monitored by an infrared gas analyser *Ciras-1* open system (PP Systems, Hitchin, UK), equipped with a

2.5 cm^2 leaf chamber (*Ciras-1* Parkinson Leaf Cuvettes, Hitchin, UK). Instantaneous water use efficiency, WUE [$\text{mmol}(\text{CO}_2) \text{ mol}^{-1}(\text{H}_2\text{O})$] was calculated as the ratio of the measured P_N and E (Wuenscher and Kozlowski 1971). Leaf to air vapour pressure deficit (VPD) was calculated by $\text{VPD} = e_s - e_a$, where e_s was saturated vapour pressure at leaf temperature and e_a the air vapour pressure (Grantz 1990).

Water relations: The diurnal courses of Ψ_l [MPa] and RWC [%] were measured simultaneously at gas exchange measurements. Ψ_l was measured from predawn (Ψ_{pd}) to sunset (Ψ_s) on 10 fully expanded leaves per species, using a portable pressure chamber (*SKPM 1400*, Skye Instruments, Llandrindod Wells, UK) with a sheet of wet filter paper inside the chamber to avoid water loss during measurements (Lo Gullo and Salleo 1988). The minimum diurnal leaf water potential (Ψ_m , at midday) was moni-

tored, and the afternoon recovery of leaf water potential ($\Delta\text{PR}_\text{R} = \Psi_\text{s} - \Psi_\text{pd}$) was calculated as $\Delta\text{PR}_\text{R} = \Psi_\text{s} - \Psi_\text{pd}$.

The leaf relative water content (RWC) was calculated as 100 (fresh mass – dry mass)/(water saturated mass – dry mass) (Grammatikopoulos 1999).

Statistics: All statistical tests were performed using a

Results

Leaf gas exchange: The highest P_N and g_s of the considered species were found in spring and autumn, decreasing during the drought period (Fig. 1). *C. incanus* showed the highest ($p < 0.01$) annual P_N [$21.8 \pm 1.8 \text{ } \mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$] and g_s [$322 \pm 28 \text{ } \text{mmol}(\text{H}_2\text{O}) \text{ m}^{-2} \text{ s}^{-1}$] values decreasing by 67 and 69 %, respectively, in summer. *P. latifolia* and *Q. ilex* showed lower annual maximum P_N [13.1 ± 1.1 and $15.2 \pm 0.6 \text{ } \mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$, respectively] and g_s [184 ± 13 and $189 \pm 16 \text{ } \text{mmol}(\text{H}_2\text{O}) \text{ m}^{-2} \text{ s}^{-1}$, respectively], although P_N was less lowered in summer (40 and 37 %, respectively).

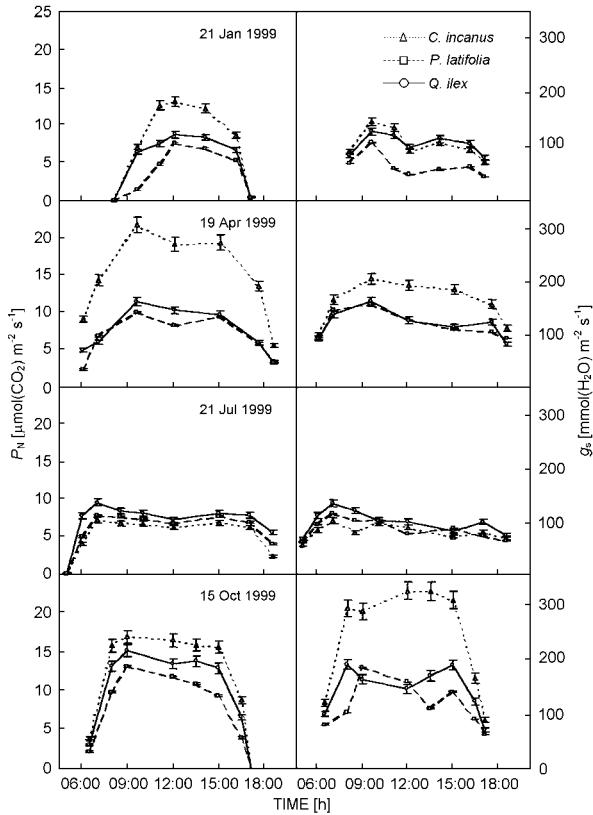


Fig. 1. Diurnal time-course of net photosynthetic rate (P_N) and stomatal leaf conductance to water vapour diffusion (g_s) of *C. incanus*, *P. latifolia*, and *Q. ilex*, on 21 January 1999, 19 April 1999, 21 July 1999, and 15 October 1999. Means \pm SE.

C. incanus showed the highest WUE ($p < 0.01$) in winter and spring for most of the day (Fig. 2). During drought, the combined effects of decreased P_N and

statistical software package (*Statistica*, Statsoft, OK, USA). Significant differences among means of the measured leaf traits were determined by analysis of variance (ANOVA) and Tukey test for multiple comparisons. Correlation coefficients were calculated to examine relationships among the measured traits.

increased E resulted in a reduced WUE [3.0 ± 0.3 , 4.1 ± 0.5 , and $4.8 \pm 0.4 \text{ } \mu\text{mol}(\text{CO}_2) \text{ mmol}^{-1}(\text{H}_2\text{O})$ in *C. incanus*, *P. latifolia*, and *Q. ilex*, respectively], *C. incanus* showing the highest reduction (61 %) and *Q. ilex* the lowest one (29 %) ($p < 0.01$).

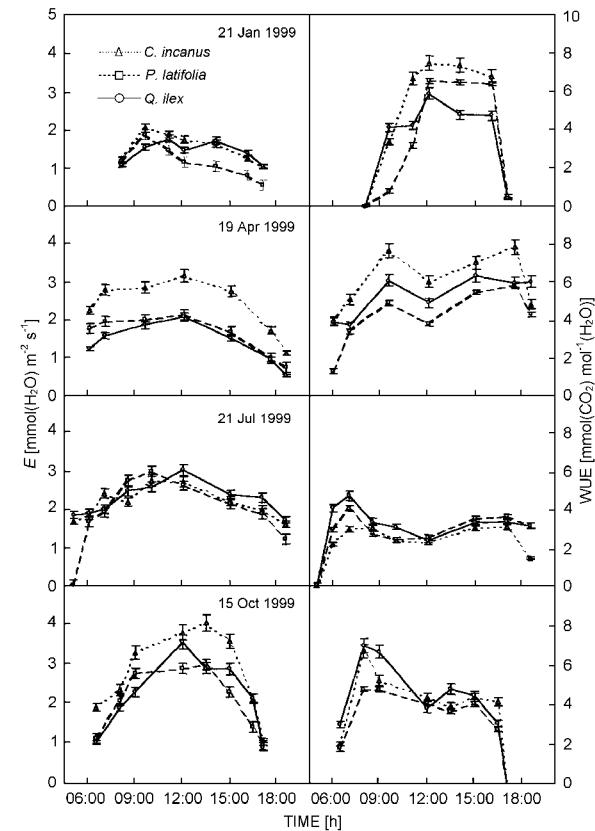


Fig. 2. Diurnal time-course of leaf transpiration rate (E) and water use efficiency (WUE) of *C. incanus*, *P. latifolia*, and *Q. ilex*, on 21 January 1999, 19 April 1999, 21 July 1999, and 15 October 1999. Means \pm SE.

The shape of the daily gas exchange pattern depended on the traits plotted and the degree of the drought stress. Bell-shaped daily curves of P_N were found for *C. incanus*, *P. latifolia*, and *Q. ilex* in winter, spring, and autumn, while in summer they were nearly flat with a slight maximum at early morning [7.2 ± 1.0 , 7.8 ± 0.9 , and $9.5 \pm 0.8 \text{ } \mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$ in *C. incanus*, *P. latifolia*, and *Q. ilex*, respectively], a depression at midday [6.3 ± 0.9 , 6.8 ± 1.2 , and $7.3 \pm 1.1 \text{ } \mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$ in *C. incanus*,

P. latifolia, and *Q. ilex*, respectively], and a small but significant ($p<0.05$) recovery during the afternoon (6.9 ± 0.6 , 7.7 ± 0.8 , and 8.1 ± 0.6 $\mu\text{mol}(\text{CO}_2) \text{ m}^{-2} \text{ s}^{-1}$ in *C. incanus*, *P. latifolia*, and *Q. ilex*, respectively). Under water stress, *P. latifolia* and *Q. ilex* maintained relatively high P_N with respect to the annual maximum (60 and 62 %, respectively) just early in the morning, when T_l and VPD were relatively low (Fig. 3) and irradiance was saturating [$\text{PAR} > 1\,000 \mu\text{mol}(\text{photon}) \text{ m}^{-2} \text{ s}^{-1}$].

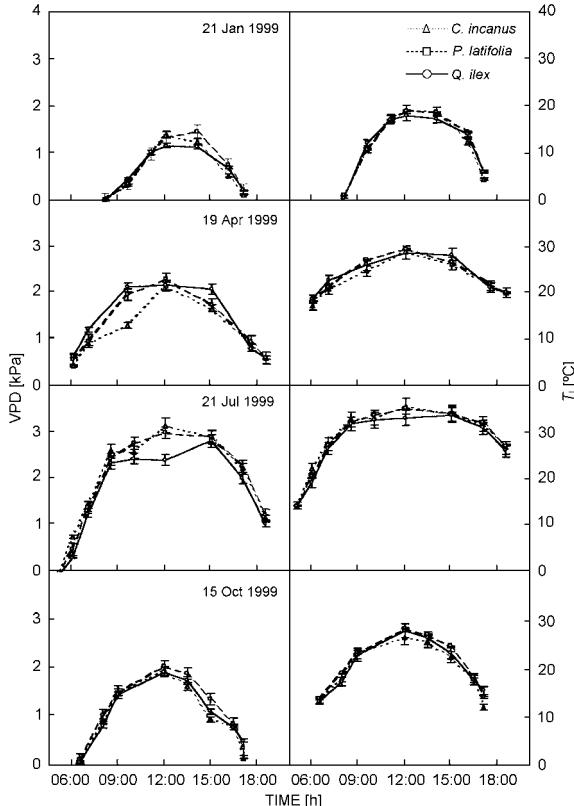


Fig. 3. Diurnal time-course of leaf to air vapour pressure deficit (VPD) and leaf temperature (T_l) of *C. incanus*, *P. latifolia*, and *Q. ilex*, on 21 January 1999, 19 April 1999, 21 July 1999, and 15 October 1999. Means \pm SE.

Daily pattern of g_s generally showed two peaks (one in the morning and another in the afternoon separated by a slight depression at midday) flattening out as drought stress increased. In summer, g_s was relatively high only at early morning [101 ± 8 , 114 ± 11 , and 133 ± 16 $\text{mmol}(\text{H}_2\text{O}) \text{ m}^{-2} \text{ s}^{-1}$ in *C. incanus*, *P. latifolia*, and *Q. ilex*, respectively] decreasing gradually during the day in *C. incanus* and *P. latifolia*, while *Q. ilex* showed a lower maximum in the afternoon.

Water relations: In the considered species, Ψ_l and RWC changed both on a diurnal and on a seasonal time-scale (Fig. 4), decreasing during the warmest hours of the day and during the drought period. There were considerable differences among the species. The diurnal maximum Ψ_l

was always recorded at predawn, when values were higher than -0.4 MPa. The lowest leaf water potential (Ψ_m) values were reached at midday when VPD reached

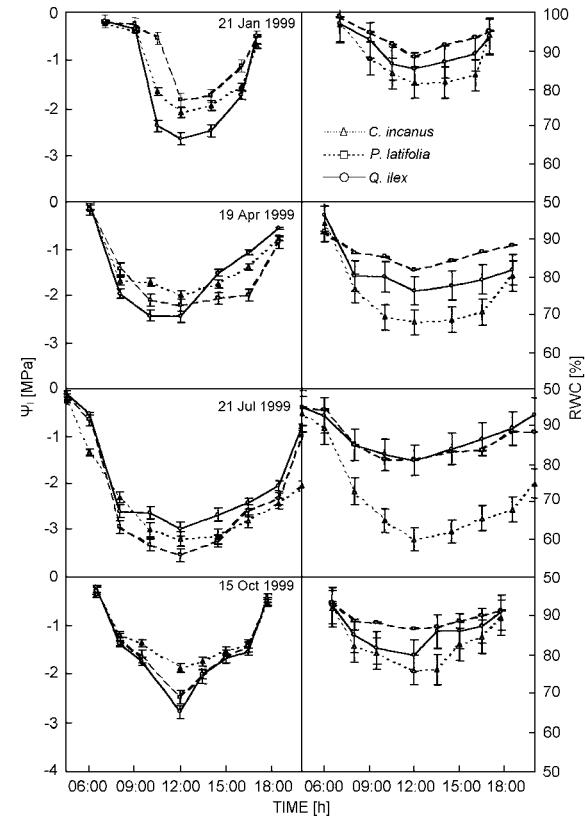


Fig. 4. Diurnal time-course of leaf water potential (Ψ_l) and relative water content (RWC) of *C. incanus*, *P. latifolia*, and *Q. ilex*, on 21 January 1999, 19 April 1999, 21 July 1999, and 15 October 1999. Means \pm SE.

Table 2. Summary of correlations among the analysed leaf traits: stomatal leaf conductance to water vapour diffusion (g_s), net photosynthetic rate (P_N), leaf relative water content (RWC), leaf to air vapour pressure deficit (VPD), leaf water potential (Ψ_l). Correlation coefficients are significant at $p<0.05$ (*), $p<0.01$ (**), and $p<0.001$ (***)^{**}; NS = not significant (all values for *P. latifolia*). $n = 30$.

$y - x$	<i>C. incanus</i>	<i>Q. ilex</i>
$g_s - \text{VPD}$	-0.48**	-0.52**
$g_s - \text{RWC}$	0.49**	NS
$g_s - \Psi_l$	0.70***	NS
$P_N - \text{VPD}$	-0.56**	NS
$P_N - \text{RWC}$	0.43*	NS
$P_N - \Psi_l$	0.79***	NS

the highest values. At sunset Ψ_l recovered to near predawn values, except in summer, when it recovered only partially and *C. incanus* showed a $\Delta\Psi_R$ of -1.82 MPa (the lowest recovery) and *Q. ilex* of -0.69 MPa (the highest recovery). Nevertheless, a complete recovery was

reached during the night for the three species. In winter, spring, and autumn *Q. ilex* showed a lower Ψ_m (on an average -2.62 ± 0.17 MPa) than the other two species ($p < 0.05$). The lowest Ψ_m ($p < 0.05$) was reached by *P. latifolia* in summer (-3.54 ± 0.36 MPa), being 11 % lower than in *C. incanus* and 19 % lower than in *Q. ilex*. In this time VPD reached the highest annual values (3.1 ± 0.5 , 3.0 ± 0.4 , and 2.4 ± 0.2 kPa in *C. incanus*, *P. latifolia*, and *Q. ilex*, respectively).

RWC showed the same trend as Ψ_l : higher values were monitored at predawn (over 90 %), decreasing at midday when Ψ_l reached the lowest values. *C. incanus*

Discussion

Although evergreen shrub species growing in the Mediterranean climate show similar basic leaf structure and photosynthetic activity (Kummerow 1973, Mitrakos and Christodoulakis 1981, Tenhunen *et al.* 1987, Gratani and Bombelli 2000, Flexas *et al.* 2001), there are significant intra- and inter-specific variations in the measured leaf traits for the considered Mediterranean species, resulting in different adaptive strategies.

C. incanus was characterised by a maximum P_N , 43 % higher than in *Q. ilex* and 66 % higher than in *P. latifolia*, and by g_s being 70 % higher than in *Q. ilex* and 75 % than in *P. latifolia*. During the drought period it showed the highest g_s decrease causing the highest P_N decrease (67 %). In spite of its low g_s , *C. incanus* showed the highest E , the lowest RWC, and the lowest afternoon recovery of Ψ_l , due to the lack of protective structure (Gratani and Bombelli 1999, 2000). Leaf gas exchange of *C. incanus* seems to be more dependent on drought stress than the other considered species (g_s significantly correlated with Ψ_l , RWC, and VPD). For these reasons *C. incanus* may be considered a drought avoiding species (according to Sánchez-Blanco *et al.* 2002, for *Cistus* spp.), trying to conserve water by progressive stomatal closure with decreasing Ψ_l and by the high reduction of leaf evaporative surface (leaf drop and smaller summer leaves – Gratani and Bombelli 2000).

Q. ilex maintains relatively high g_s and P_N even at low Ψ_l (according to Tenhunen *et al.* 1985 and Acherar and Rambal 1992): leaf gas exchange does not significantly correlate with Ψ_l and RWC. Although *Q. ilex* showed the highest g_s with respect to *C. incanus* and *P. latifolia* in July, the RWC values were the highest, showing a rapid recovery of Ψ_l at sunset. This suggests that *Q. ilex* can recover at least partly from water loss (according to the results of Salleo and Lo Gullo 1990), maintaining a favourable ratio between water loss and uptake during the drought period and resulting in a relatively constant RWC. The responsive stomatal behaviour (g_s significantly correlated with VPD) of *Q. ilex* in addition to the leaf protective structure (Gratani and Bombelli 1999,

had the greatest RWC decrease (31 %) during drought, twice as large as in *P. latifolia* and *Q. ilex* ($p < 0.01$). The diurnal RWC was never below 74 % in *P. latifolia* and *Q. ilex*, while in *C. incanus* (which showed the lowest values) it reached 65 % in summer.

Statistics: The result of correlation analysis is showed on Table 2. In different species leaf variables did not correlate in the same way: in *C. incanus* g_s and P_N significantly correlated with VPD, Ψ_l , and RWC; in *Q. ilex* g_s and P_N significantly correlated with VPD; in *P. latifolia* g_s and P_N did not correlate with VPD, Ψ_l , and RWC.

2000) allows a fine regulation of E and high P_N in each moment of the day and during the year. This behaviour seems to optimise daily WUE in a fluctuating microclimate (Acherar and Rambal 1992). These results confirm that *Q. ilex* is a drought avoiding species with a water spending or water saving strategy (Lo Gullo and Salleo 1988) according to circumstances, resulting in a regulator species (Rambal 1992).

P. latifolia undergoes a much higher Ψ_l drop in July than *C. incanus* and *Q. ilex*, but shows a rapid recovery at sunset. The rapid drop of Ψ_l as soon as the leaves begin to lose water in the early hours of the day is probably allowed by the high bulk modulus of elasticity (*i.e.* the high “rigidity” of the living cell walls) (Nardini *et al.* 1999). *P. latifolia* shows the lowest P_N and the lowest stomatal control in respect to *C. incanus* and *Q. ilex* (g_s is not correlated with VPD), determining the lowest WUE; the relative inability to control water loss by their stomata is confirmed by the larger daily and annual variations in Ψ_l (according to Miller *et al.* 1993 for *Juniperus occidentalis*). Nevertheless, leaf gas exchange is independent from Ψ_l (Ψ_l is not correlated with P_N and g_s): P_N remains rather high even at low Ψ_l . These physiological features in addition to the high presence of leaf protective structures (Gratani and Bombelli 1999, 2000) allow *P. latifolia* to tolerate the lowest Ψ_l , suggesting a drought tolerance strategy.

These results suggest that *Q. ilex* and *P. latifolia*, by their water use strategy, are less sensitive to drought stress in respect to *C. incanus* and might be at a competitive advantage considering a drought stress increase in the Mediterranean Basin. Our study indicates that the considered species are well adapted to the prevailing environment in Mediterranean climate areas, but show different adaptive strategies. These might be useful for their co-occurrences in the same habitat: in Mediterranean ecosystems, during drought period, complementary water use strategies may minimise plant competition, optimising productivity of the stand.

References

Acherar, M., Rambal, S.: Comparative water relations of four Mediterranean oak species. – *Vegetatio* **99-100**: 177-184, 1992.

Angelopoulos, K., Dichio, B., Xiloyannis, C.: Inhibition of photosynthesis in olive trees (*Olea europaea* L.) during water stress and rewatering. – *J. exp. Bot.* **47**: 1093-1100, 1996.

Ashraf, M., Ahmad, A., McNeilly, T.: Growth and photosynthetic characteristics in pearl millet under water stress and different potassium supply. – *Photosynthetica* **39**: 389-394, 2001.

Castillo, J.M., Rubio Casal, A.E., Luque, C.J., Luque, T., Figueiroa, M.E.: Comparative field summer stress of three tree species co-occurring in Mediterranean coastal dunes. – *Photosynthetica* **40**: 49-56, 2002.

Castro-Díez, P., Villar-Salvador, P., Pérez-Rontomé, C., Maestro-Martínez, M., Montserrat-Martí, G.: Leaf morphology, leaf chemical composition and stem xylem characteristics in two *Pistacia* (Anacardiaceae) species along a climatic gradient. – *Flora* **193**: 195-202, 1998.

Dickson, R.E., Tomlinson, P.T.: Oak growth, development and carbon metabolism in response to water stress. – *Ann. Sci. forest.* **53**: 181-196, 1996.

Faria, T., Silvério, D., Breia, E., Cabral, R., Abadia, A., Abadia, J., Pereira, J.S., Chaves, M.M.: Differences in the response of carbon assimilation to summer stress (water deficits, high light and temperature) in four Mediterranean trees species. – *Physiol. Plant.* **102**: 419-428, 1998.

Flexas, J., Gutiérrez, J., Jonasson, S., Medrano, H., Mus, M.: Seasonal patterns and control of gas exchange in local populations of the Mediterranean evergreen shrub *Pistacia lentiscus* L. – *Acta oecol.* **22**: 33-43, 2001.

Grammatikopoulos, G.: Mechanisms for drought tolerance in two Mediterranean seasonal dimorphic shrubs. – *Aust. J. Plant Physiol.* **26**: 587-593, 1999.

Grantz, D.A.: Plant response to atmospheric humidity. – *Plant Cell Environ.* **13**: 667-679, 1990.

Gratani, L.: [Photosynthetic response and leaf morphological adaptations of some evergreen shrub species to microclimatic variations.] – *Ecol. Medit.* **20**: 61-71, 1994. [In Ital.]

Gratani, L., Bombelli, A.: Leaf anatomy, inclination, and gas exchange relationships in evergreen sclerophyllous and drought semideciduous shrub species. – *Photosynthetica* **37**: 573-585, 1999.

Gratani, L., Bombelli, A.: Correlation between leaf age and other leaf traits in three Mediterranean maquis shrub species: *Quercus ilex*, *Phillyrea latifolia* and *Cistus incanus*. – *Environ. exp. Bot.* **43**: 141-153, 2000.

Infante, J.M., Damesin, C., Rambal, S., Fernández-Alés, R.: Modelling leaf gas exchange in holm-oak trees in southern Spain. – *Agr. Forest Meteorol.* **95**: 203-223, 1999.

Ivandic, V., Hackett, C.A., Zhang, Z.J., Staub, J.E., Nevo, E., Thomas, W.T.B., Forster, B.P.: Phenotypic responses of wild barley to experimentally imposed water stress. – *J. exp. Bot.* **51**: 2021-2029, 2000.

Jones, H.G.: Stomatal control of photosynthesis and transpiration. – *J. exp. Bot.* **49**: 387-398, 1998.

Kao, W.-Y., Forseth, I.N.: Diurnal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean growth under different nitrogen and water availabilities. – *Plant Cell Environ.* **15**: 703-710, 1992.

Karabourniotis, G.: Light-guiding function of foliar sclereids in the evergreen sclerophyll *Phillyrea latifolia*: a quantitative approach. – *J. exp. Bot.* **49**: 739-746, 1998.

Kummerow, J.: Comparative anatomy of sclerophylls of Mediterranean climatic areas. – In: Di Castri, F., Mooney, H.A. (ed.): Mediterranean-type Ecosystems. Origin and Structure. Pp. 157-167. Springer-Verlag, Berlin 1973.

Leidi, E.O.: Leaf gas exchange of *Pachyrhizus ahipa* and *P. erosus* under water and temperature stress. – *Photosynthetica* **40**: 375-381, 2002.

Lo Gullo, M.A., Salleo, S.: Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions. – *New Phytol.* **108**: 267-276, 1988.

Miller, P.M., Eddleman, L.E., Miller, J.M.: Influence of vapor pressure deficit and soil moisture on gas exchange of *Juniperus occidentalis*. – *Northwest Sci.* **67**: 147-155, 1993.

Mitrakos, K., Christodoulakis, N.S.: Leaf structure diversity in Mediterranean evergreen sclerophyllous. – In: Margaris, N.S., Mooney, H.A. (ed.): Components of Productivity of Mediterranean-Climate Regions. Basic and Applied Aspects. Pp. 21-25. Dr W. Junk Publ., The Hague – Boston – London 1981.

Nardini, A., Lo Gullo, M.A., Salleo, S.: Competitive strategies for water availability in two Mediterranean *Quercus* species. – *Plant Cell Environ.* **22**: 109-116, 1999.

Rambal, S.: *Quercus ilex* facing water stress: a functional equilibrium hypothesis. – *Vegetatio* **99-100**: 147-153, 1992.

Richter, H., Kikuta, S.B.: Osmotic and elastic components of turgor adjustment in leaves under stress. – In: Kreeb, K.H., Richter, H., Hinckley, T.M. (ed.): Structural and Functional Responses to Environmental Stresses. Pp. 129-137. SPB Academic Publishing, The Hague 1989.

Salleo, S., Lo Gullo, M.A.: Sclerophyll and plant water relations in three Mediterranean *Quercus* species. – *Ann. Bot.* **65**: 259-270, 1990.

Sánchez-Blanco, M.J., Rodríguez, P., Morales, M.A., Ortúñoz, M.F., Torrecillas, A.: Comparative growth and water relations of *Cistus albidus* and *Cistus monspeliensis* plants during water deficit conditions and recovery. – *Plant Sci.* **162**: 107-113, 2002.

Scotti Campos, P., Ramalho, J.C., Lauriano, J.A., Silva, M.J., do Céu Matos, M.: Effects of drought on photosynthetic performance and water relations of four *Vigna* genotypes. – *Photosynthetica* **36**: 79-87, 1999.

Tenhuunen, J.D., Beyschlag, W., Lange, O.L., Harley, P.C.: Changes during summer drought in leaf CO₂ uptake rates of macchia shrubs growing in Portugal: limitations due to photosynthetic capacity, carboxylation efficiency and stomatal conductance. – In: Tenhuunen, J.D., Catarino, F.M., Lange, O.L., Oechel, W.C. (ed.): Plant Response to Stress. Functional Analysis in Mediterranean Ecosystems. Pp. 305-327. Springer-Verlag, Berlin – Heidelberg – New York – London – Paris – Tokyo 1987.

Tenhuunen, J.D., Lange, O.L., Harley, P.C., Beyschlag, W., Meyer, A.: Limitations due to water stress on leaf net photosynthesis of *Quercus coccifera* in the Portuguese evergreen scrub. – *Oecologia* **67**: 23-30, 1985.

Tezara, W., Mitchell, V.J., Driscoll, S.D., Lawlor, D.W.: Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. – *Nature* **401**: 914-917, 1999.

Tognetti, R., Minnocci, A., Peñuelas, J., Raschi, A., Jones,

M.B.: Comparative field water relations of three Mediterranean shrub species co-occurring at a natural CO₂ vent. – *J. exp. Bot.* **51**: 1135-1146, 2000.

Torrecillas, A., Alarcón, J.J., Domingo, R., Planes, J., Sánchez-Blanco, M.J.: Strategies for drought resistance in leaves of two almond cultivars. – *Plant Sci.* **118**: 135-143, 1996.

Werner, C., Correia, O., Beyschlag, W.: Two different strategies of Mediterranean macchia plants to avoid photoinhibitory damage by excessive radiation levels during summer drought. – *Acta oecol.* **20**: 15-23, 1999.

White, D.A., Turner, N.C., Galbraith, J.H.: Leaf water relations and stomatal behavior of four allopatric *Eucalyptus* species planted in Mediterranean southwestern Australia. – *Tree Physiol.* **20**: 1157-1165, 2000.

Wuenscher, J.E., Kozlowski, T.T.: Relationship of gas-exchange resistance to tree-seedling ecology. – *Ecology* **52**: 1016-1023, 1971.