

Photosynthetic pathways and life form types for native plant species from Hulunbeier Rangelands, Inner Mongolia, North China

R.Z. WANG

Laboratory of Quantitative Vegetation Ecology, Institute of Botany, the Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China

Abstract

Photosynthetic pathway types (C₃, C₄, and CAM) and life forms of native species from Hulunbeier rangelands, north China were studied. Of the total 258 species, 216 species in 132 genera and 42 families had C₃ photosynthetic pathway, including dominant herbs, *e.g.* *Stipa baicalensis* Roshev. and *Leymus chinensis* (Trin.) Tzvel., *Filifolium sibiricum* Kitam. and *Arudinella hirta* (Thunb.) Koidz. 38 species in 28 genera and 10 families were found with C₄ photosynthesis, and 4 species in 2 genera and 1 family had CAM photosynthetic pathway. The occurrence of C₄ species was common in *Gramineae* and *Chenopodiaceae*, and the two families were leading ones within C₄ plants. More than 52 % of the total 258 species were in H form, 21 % in Th form, 19 % in G form; the other life form types, *e.g.* Ch, M, N, and HH, formed less than 3 %. 68 % of C₄ species were in Th form and 24 % in H form, indicating that these types were the dominant life forms for C₄ species in the rangeland region. The occurrence of C₄ species was closely related with plant habitats, disturbed lands had the highest C₄ abundance (55 % of the total C₄ species), followed by grasslands and sandy soil, and forests had the lowest C₄ abundance (8 %). Hence the occurrence of C₄ species could be efficient indicator for rangeland dynamics in Hulunbeier rangelands.

Additional key words: C₃, C₄ and CAM plants; meadow and steppe.

Introduction

Hulunbeier region (47°20'–50°12'N, 118°31'–121°03'E) covers an area of about 84 000 km² in the northeastern Inner Mongolia, China, about 85 % of which is rangelands. This type of rangelands has been grazed by nomadic herds for centuries. The high palatability of herbs with herbage production superior both in quality and quantity makes the rangelands ideal for grazing and forage in north China. More recently, sedentary agriculture has resulted in heavier grazing pressure and farm cultivation, which have led to increased soil erosion and desertification, an apparent deterioration in rangeland quality and productivity (Zhang and Liu 1992). Within the past 5 years there has been a move toward greater regulation of rangeland management in order to reduce rangeland deterioration and permit its sustainable utilization, as well as to improve the local environments. Such rangeland management regulation (*e.g.* warm season, cool season, and farm cultivation) must ultimately be based on scientific principles and will require more knowledge of the rangelands, *e.g.* rangeland vegetation types, dynamics, and photosynthetic pathway compositions. Previous

researches on this type of rangelands mainly focused on rangeland classification (Pan 1992, Zhang and Liu 1992, Zhu 1993) and rangeland grazing (Li and Xiao 1965), but the photosynthetic pathway types, life forms, and their roles in rangeland management decision remain unclear.

Classification of photosynthetic pathway types and analysis of their relation to climatic patterns have been well documented for many vegetation types (Downton 1975, Teeri and Stowe 1976, Raghavendra 1978, Teeri *et al.* 1980, Takeda and Hakoyama 1985, Collins and Jones 1985, Ueno and Takeda 1992, Li 1993, Redmann *et al.* 1995, Collatz *et al.* 1998, Pyankov *et al.* 2000). Some studies deal with the relations between photosynthetic pathway types and land use (Williams and Markley 1973, Redmann *et al.* 1995, Wang 2002a,d), but only a few look at the relationships of the photosynthetic pathway types with life forms (Wang 2002b,c). Observations showed that photosynthetic pathway types combined with life forms could be efficient indicators for rangeland dynamics. The objective of the present study was to investigate the photosynthetic pathway types and life forms

Received 19 January 2004, accepted 17 March 2004.

Fax: 0086-01-82591781, e-mail: wangrenzh@sohu.com

Acknowledgments: I am grateful for the funding provided by National Key Basic Research Special Foundation Project (NKBRSF project G2000018607) and in part by the Key Projects of Knowledge Innovation of Chinese Academy of Sciences (KSCX1-08-03).

for the native plant species from Hulunbeier rangelands, north China. This study may bring new information for

Materials and methods

The study was conducted in Hulunbeier rangelands, a typical rangeland region distributed at the eastern end of the Eurasian steppe zone, with the main location in China being the eastern part of Inner Mongolia. The elevations of the rangelands vary from 600 m in the west to 1 000 m in the east. Local vegetation has been classified as temperate meadow and steppe, humid rangelands dominated by meso-xerophytes and associated mesophytes. Common dominant species in the rangelands are *Stipa baicalensis* Roshev. and *Leymus chinensis* (Trin.) Tzvel., and subdominants *Filifolium sibiricum* Kitam. and *Arudinella hirta* (Thunb.) Koidz. Most of the region has mountain dark brown chernozem and chestnut soils from the east to the west or from grassland–forest ecotone to typical steppe. The main characteristics of the climate of the region are cold, dry, and frequently windy spring; cool and short summer; early autumn frosts; and long cold winter with much snowfall. Mean air temperature varies from -26°C in January to 19°C in July. Moisture gradient is very steep, with annual precipitation varying from 450 mm in the east forests to 250 mm in the west steppes, of which

better understanding C_3 and C_4 plants in the region and their relations with rangeland ecosystems and land use.

70–80 % falls between June and August (Zhang and Liu 1992).

Floristic species were obtained from both field survey and references published from 1980 to 2002 (Commissione Redactorum Flora Intramongolicae 1980, Pan 1992, Chen and Jia 2002). Photosynthetic pathway types for the plant species were determined by stable carbon isotope ratio ($\delta^{13}\text{C}$) and from the references published between 1985 and 2002 (e.g. Takeda and Hakoyama 1985, Pan 1992, Li 1993, Redmann *et al.* 1995, Yin and Li 1997, Pyankov *et al.* 2000, Wang 2002b,c). Plants with $\delta^{13}\text{C}$ values above -19‰ were considered to have the C_4 photosynthetic pathway, and those with $\delta^{13}\text{C}$ values less than -21‰ to have C_3 photosynthesis (Redmann *et al.* 1995, Yin and Li 1997). Plants identified in the region were classified into seven life form types: hemicryptophyte (H), geophyte (G), therophyte (Th), chamaephyte (Ch), macrophanerophyte (M), nanophanerophyte (N), and hydrogeophyte (HH) (Li 1979, Wang 2002b,c). Plant distribution habitats were classified into five main types: frost (FO), grassland (GL), disturbed land (DB), sandy soil (SS), and wetland (WL) (Table 1).

Results

Rangeland floristic composition: 258 vascular plant species, about 20 % of the total species identified in the Hulunbeier rangelands, in 155 genera and 46 families were selected into those having C_3 , C_4 , and CAM photosynthesis (Table 1). One species (*Ephedra sinica* Stapf.) was identified in *Gymnospermae*, the others in *Angiospermae*. Of the total 257 *Angiospermae* species, 182 species were found in *Dicotyledoneae*, e.g. *Compositae* (46 species), *Fabaceae* (21 species), *Chenopodiaceae* (17 species), *Rosaceae* (14 species), and *Ranunculaceae* (11 species). 75 species belong to *Monocotyledoneae*, e.g. *Gramineae* (50 species), *Cyperaceae* (9 species), and *Liliaceae* (9 species). As for photosynthetic pathway types, 216 species in 132 genera and 42 families were found with C_3 photosynthesis, 38 species in 28 genera and 10 families with C_4 photosynthesis, and 4 species in 2 genera and 1 family with CAM photosynthesis (Table 1). The number of C_4 species was no more than 3 % of the total plant species identified in local flora, even though it was about 15 % of those listed in Table 1. For the 182 *Dicotyledoneae* species listed in Table 1, 90 % was C_3 species, 8 % was C_4 species, and 2 % was CAM species. Of the 75 *Monocotyledoneae* species, however, 31 % were with C_4 photosynthesis, the other 69 % with C_3 photosynthesis. This indicated that the occurrence of C_4 species in *Monocotyledoneae* was as high as about 4 times that in *Dicotyledoneae* in the region.

The occurrence of C_4 species in the rangeland region was common in *Chenopodiaceae* (47 % of the total *Chenopodiaceae* species), e.g. *Kochia prostrata* (L.) Schrad., *K. scoparia* (L.) Schrad., *K. sieversiana* (Pall.) C.A. Mey., *Salsola collina* Pall., and *S. pestifer* A. Nelson, and in *Gramineae* (46 % of the total grasses), e.g. *Digitaria ciliaris* (Rotz.) Koel., *Eragrostis pilosa* (L.) P.B., *E. poaeoides* Beauv., *Eriochloa villosa* (Thunb.) Kunth L. Most of the C_4 species in these two families were annual species, some of them having great tolerance to arid environments. 74 % of the total C_4 species identified in Hulunbeier rangelands belong to *Gramineae* (53 % or 20 of 38) and *Chenopodiaceae* (21 % or 8 of 38), suggesting that these two families are the leading families with C_4 metabolism.

Plant life form types and distribution patterns: There were seven life form types for the plants from Hulunbeier rangelands (Fig. 1A). More than half (54 %) of the total 258 species were hemicryptophytes (H), and 6.5 % of H formed species with C_4 photosynthesis. In the rangeland region, therophyte (Th) was the second leading life form type, about 21 % of the total species in Table 1, but half of the Th form species were C_4 plants, which was about 68 % of the total C_4 species (Fig. 1B, Table 1). Of the total 258 species, 10 % was the Th form C_4 species, while for the H form it was only 3.5 %. Only one C_4 species

Table 1. Photosynthetic pathway types (C₃, C₄, and CAM), life forms, and habitats in the Hulunbeier rangelands, China. Life forms: H = hemicryptophyte, G = geophyte, Th = therophyte, Ch = chamaephyte, M = macrophanerophyte, N = nanophanerophyte, HH = hydrogeophyte. Habitat types: FO = frost, GL = grassland, DB = disturbed land, SS = sandy soil, WL = wet land.

	Species	C ₃ / C ₄	Life form	Habitat
<i>Gymnospermae</i>				
<i>Ephdraceae</i>	<i>Ephedra sinica</i> Stapf.	C ₃	Ch	GL
<i>Angiospermae</i>				
<i>Dicotyledoneae</i>				
<i>Amaranthaceae</i>	<i>Amaranthus ascendens</i> Loisel.	C ₄	Th	DB
	<i>A. retroflexus</i> L.	C ₄	Th	DB
<i>Asclepiadaceae</i>	<i>Cynanchum amplexicaule</i> Hemsl.	C ₃	G	GL
	<i>C. chinensis</i> R. Br.	C ₃	G	GL
	<i>C. thesioides</i> (Freyen) K. Schum.	C ₃	G	GL FO
	<i>Pycnostelma paniculatum</i> K. Schum.	C ₃	G	SS FO
<i>Betulaceae</i>	<i>Betula dahurica</i> Pall.	C ₃	M	FO
<i>Bignoniaceae</i>	<i>Incarvillea sinensis</i> Lamark.	C ₃	Th	SS DB
<i>Boraginaceae</i>	<i>Cynoglossum divaricatum</i> Steph.	C ₃	G	SS DB FO
	<i>Lappula myosotis</i> Moench	C ₃	H	SS DB FO
<i>Campanulaceae</i>	<i>Adenophora stenanthina</i> (Ledeb.) Kitag.	C ₃	G	SS FO
	<i>A. stenophylla</i> Hemsl.	C ₃	G	SS FO
	<i>Platycodon grandiflorum</i> DC.	C ₃	G	FO
<i>Caryophyllaceae</i>	<i>Dianthus amurensis</i> Jacq.	C ₄	H	GL
	<i>D. chinensis</i> L.	C ₃	H	GL FO
	<i>Silene repens</i> Pall.	C ₃	H	SS FO
<i>Chenopodiaceae</i>	<i>Agriophyllum arenarium</i> Bieb.	C ₄	Th	SS DB
	<i>Axyris amaranthoides</i> L.	C ₃	Th	DB SS
	<i>Bassia dasypylla</i> (Fisch. et Mey.) Kuntze	C ₄	Th	SS DB
	<i>Chenopodium acuminatum</i> Will.	C ₃	Th	DB
	<i>C. album</i> L.	C ₃	Th	DB
	<i>C. album</i> L. var. <i>stenophyllum</i> Makono	C ₃	Th	DB
	<i>C. aristatum</i> L.	C ₃	Th	DB
	<i>C. glaucum</i> L.	C ₃	Th	DB GL
	<i>Corispermum mongolicum</i> Iljin	C ₃	Th	SS FO
	<i>Kochia prostrata</i> (L.) Schrad.	C ₄	Ch	SS FO
	<i>K. scoparia</i> (L.) Schrad.	C ₄	Th	GL
	<i>K. sieversiana</i> (Pall.) C.A. Mey.	C ₄	Th	GL
	<i>Salsola collina</i> Pall.	C ₄	Th	DB
	<i>S. komarovii</i> Iljin	C ₄	Th	DB
	<i>S. pestifer</i> A. Nelson	C ₄	Th	DB FO
	<i>Suaeda corniculata</i> (C.A. Mey.) Bunge	C ₃	Th	GL
	<i>S. glauca</i> Bunge	C ₃	Th	GL
<i>Compositae</i>	<i>Artemisia anethifolia</i> Weber	C ₃	H	GL
	<i>A. anethoides</i> Mattf.	C ₃	H	GL
	<i>A. annua</i> L.	C ₃	H	DB
	<i>A. argyi</i> Levl. et Vant.	C ₃	H	GL FO
	<i>A. desertorum</i> Spreng.	C ₃	H	SS GL
	<i>A. dracunculus</i> L.	C ₃	H	GL FO
	<i>A. eriopoda</i> Bunge	C ₃	H	FO
	<i>A. frigida</i> Willd.	C ₃	Ch	GL
	<i>A. integrifolia</i> L.	C ₃	H	GL FO
	<i>A. japonica</i> Thunb. var. <i>manshurica</i> Kom.	C ₃	H	GL SS
	<i>A. laciiniata</i> Willd.	C ₃	H	GL
	<i>A. mongolica</i> Fisch.	C ₃	H	GL DB
	<i>A. ordosica</i> Krasch.	C ₃	Ch	SS FO
	<i>A. oxycephala</i> Kitag.	C ₃	Ch	SS FO
	<i>A. pectinata</i> Pall.	C ₃	H	GL SS

Table 1 (continued)

	Species	C ₃ / C ₄	Life form	Habitat
<i>Compositae</i> (cont.)	<i>A. scoparia</i> Waldst. et Kit.	C ₃	H	DB GL
	<i>A. selengensis</i> Turcz. ex Bess.	C ₃	H	GL
	<i>A. sieversiana</i> Willd.	C ₃	H	DB
	<i>Aster alpinus</i> L.	C ₃	H	GL
	<i>Cirsium pendulum</i> Fisch.	C ₃	H	DB
	<i>Echinops gmelini</i> Turcz.	C ₃	G	SS GL
	<i>E. latifolius</i> Tausch.	C ₃	G	SS GL
	<i>Filifolium sibiricum</i> Kitam.	C ₃	H	GL
	<i>Heteropappus altaicus</i> (Willd.) Novopokr.	C ₃	H	GL SS
	<i>Inula britanica</i> L.	C ₃	H	GL WL
	<i>I. japonica</i> Thunb.	C ₃	H	GL WL
	<i>Ixeris chinensis</i> Nakai subsp. <i>graminifolia</i> Kitag.	C ₃	H	DB
	<i>I. chinensis</i> Nakai var. <i>intermedia</i> Kitag.	C ₃	H	DB
	<i>I. sonchifolia</i> Hance	C ₃	H	DB
	<i>Lactuca indica</i> L.	C ₃	G	DB WL
	<i>Leontopodium leontopodioides</i> Reauv.	C ₃	H	GL SS
	<i>Ligularia jamesii</i> (Hemsl.) Kom.	C ₃	H	GL
	<i>L. mongolica</i> (Turcz.) DC.	C ₃	H	GL
	<i>Neopallasia pectinata</i> (Pall.) Poljak	C ₃	Th	GL
	<i>Olgaea leucophylla</i> (Turcz.) Iljin	C ₃	H	SS WL GL
	<i>Picris japonica</i> Thunb.	C ₃	H	GL
	<i>Saussurea japonica</i> (Thunb.) DC.	C ₃	G	GL DB
	<i>S. runcinata</i> DC.	C ₃	G	GL
	<i>Scorzonera glabra</i> Rupr.	C ₃	H	GL SS
	<i>Senecio ambracensis</i> Turcz.	C ₃	H	GL DB
	<i>S. integrifolius</i> Claville.	C ₃	H	DB
	<i>Serratula komarovii</i> Iljin	C ₃	G	GL SS
	<i>Taraxacum mongolicum</i> Hand.	C ₃	H	GL DB
	<i>T. ohwianum</i> Kitam.	C ₃	H	GL DB
	<i>Xanthium strumarium</i> L.	C ₃	Th	DB
	<i>Youngia tenuifolia</i> (Willd.) Babc. et Stebb.		H	SS
<i>Convolvulaceae</i>	<i>Calystegia pellita</i> Ledeb.	C ₃	G	GL WL
<i>Crassulaceae</i>	<i>Orostachys fimbriatus</i> (Turcz.) Berger	CAM	Th	SS
	<i>O. malacophyllum</i> (Pall.) Fisch.	CAM	Th	SS
	<i>O. spinosus</i> (L.) C.A. Mey.	CAM	Th	SS
	<i>Sedum aizoon</i> L.	CAM	H	GL WL
<i>Cruciferae</i>	<i>Dontostemon dentatus</i> Ldb.	C ₃	H	SS DB
	<i>D. micranthus</i> C.A. Mey.	C ₃	H	SS DB
	<i>Lepidium apetalum</i> Willd.	C ₃	H	DB
	<i>Ptilotrichum canescens</i> (DC.) C.A. Mey.	C ₃	N	SS
<i>Dipsacaceae</i>	<i>Scabiosa comosa</i> Fisch. ex Roem. et Schult.	C ₃	H	GL SS
	<i>S. tschiliensis</i> Grunni	C ₃	H	GL SS
<i>Euphorbiaceae</i>	<i>Euphorbia esula</i> L.	C ₃	G	GL
	<i>E. humifusa</i> Willd.	C ₄	Th	GL
<i>Fabaceae</i>	<i>Astragalus adsurgens</i> Pall.	C ₃	H	GL SS
	<i>A. melilotoides</i> Pall.	C ₃	H	SS GL
	<i>A. scaberrimus</i> Bunge	C ₃	H	GL
	<i>Caragana microphylla</i> Lam.	C ₃	N	SS FO
	<i>C. stenophylla</i> Pojark.	C ₃	N	SS FO
	<i>Gueldensfaedtia stenophylla</i> Bunge	C ₃	H	GL
	<i>Kummerowia stipulacea</i> (Maxim.) Makino	C ₃	Th	GL
	<i>K. striata</i> (Thunb.) Schindler	C ₃	Th	GL
	<i>Lespedeza davurica</i> Schindler	C ₃	Ch	GL SS
	<i>Medicago falcata</i> L.	C ₃	H	GL
	<i>Melilotus suaveolens</i> Ledeb.	C ₃	H	GL
	<i>Melilotoides ruthenica</i> (L.) Sojak	C ₃	H	GL
	<i>Oxytropis filiformis</i> DC.	C ₃	H	GL SS

Table 1 (continued)

	Species	C ₃ / C ₄	Life form	Habitat
Fabaceae (cont.)	<i>O. hirta</i> Bunge	C ₃	H	GL SS
	<i>O. myriophylla</i> DC.	C ₃	H	GL SS
	<i>Thermopsis lanceolata</i> R.Br.	C ₄	H	SS
	<i>Trifolium lupinaster</i> L.	C ₃	H	GL
	<i>T. pratense</i> L.	C ₃	H	GL
	<i>T. repens</i> L.	C ₃	H	GL
	<i>Vicia multicaulis</i> Ledeb.	C ₃	H	GL WL
Geraniaceae	<i>V. unijuga</i> R.Br.	C ₃	H	GL WL
	<i>Erodium stephanianum</i> Willd.	C ₃	G	DB SS
Labiatae	<i>Elsholtzia ciliata</i> (Thunb.) Hyland.	C ₃	H	GL FO
	<i>Phlomis tuberosa</i> L.	C ₃	H	GL
	<i>P. umbrosa</i> Turcz.	C ₃	H	GL
	<i>Prunella asiatica</i> Nakai	C ₃	H	GL
	<i>Schizonepeta multifida</i> (L.) Briq.	C ₃	Th	SS
	<i>Scutellaria baicalensis</i> Georgi	C ₃	G	GL SS
	<i>S. ikonnikovii</i> Juz.	C ₃	G	GL SS
Linaceae	<i>S. scordifolia</i> Fisch.	C ₃	G	SS
	<i>Thymus serpyllum</i> L.	C ₃	Ch	SS DB
Moraceae	<i>Linum stellatum</i> Planchon	C ₃	Th	SS GL
Orobanchaceae	<i>Cannabis sativa</i> L. f. <i>ruderalis</i> Chu	C ₃	Th	DB
Papaveraceae	<i>Orobanche caeruleascens</i> Stephan	C ₃	Th	SS
Plantaginaceae	<i>Papaver nudicaule</i> L.	C ₃	H	SS FO
Plumbaginaceae	<i>Plantago asiatica</i> L.	C ₃	H	GL DB
	<i>P. depressa</i> Willd.	C ₃	H	GL DB
Polygonaceae	<i>Limonium bicolor</i> O. Kuntze	C ₃	H	GL DB
Polygalaceae	<i>Polygala tenuifolia</i> Willd.	C ₃	H	GL SS
Portulacaceae	<i>Polygonum aviculare</i> L.	C ₃	Th	DB WL
	<i>P. divaricatum</i> L.	C ₃	H	GL DB
	<i>P. sibiricum</i> Laxm.	C ₃	G	GL
Primulaceae	<i>Portulaca oleracea</i> L.	C ₄	Th	DB
Ranunculaceae	<i>Glaux maritima</i> L.	C ₃	Th	WL
Rosaceae	<i>Clematis hexapetala</i> Pall.	C ₃	G	SS GL
	<i>C. mandshurica</i> Rupr.	C ₃	G	SS FO
	<i>Delphinium grandiflorum</i> L.	C ₃	G	SS FO
	<i>Paeonia lactiflora</i> Pall.	C ₃	G	FO
	<i>P. obovata</i> Maxim.	C ₃	G	FO
	<i>Pulsatilla tuczanicinovii</i> Kryl. et Setg.	C ₃	G	GL SS
	<i>P. koreana</i> Nakai	C ₃	G	GL SS
	<i>Ranunculus japonicus</i> Thunb.	C ₃	G	GL
	<i>Thalictrum minus</i> L.	C ₃	G	GL FO SS
	<i>T. simplex</i> L.	C ₃	G	GL FO SS
	<i>T. squarrosum</i> Steph. ex Willd.	C ₃	G	SS FO
Rosaceae	<i>Geum aleppicum</i> Jacq.	C ₃	H	GL WL
	<i>Potentilla acaulis</i> L.	C ₃	H	GL
	<i>P. anserina</i> L.	C ₃	H	GL
	<i>P. betonicaefolia</i> Poiret	C ₃	H	GL
	<i>P. chinensis</i> Serigne	C ₃	H	GL
	<i>P. confetta</i> Bunge	C ₃	H	GL
	<i>P. discolor</i> Bunge	C ₃	H	GL
	<i>P. Filipendula</i> Willd.	C ₃	H	GL
	<i>P. flagellaris</i> Willd.	C ₃	H	GL
	<i>P. verticillaris</i> Steph.	C ₃	H	GL
	<i>Prunus sibirica</i> (L.) Lam.	C ₃	N	SS FO

Table 1 (continued)

	Species	C ₃ / C ₄	Life form	Habitat
Rosaceae (cont.)	<i>Sanguisorba officinalis</i> L.	C ₃	H	GL WL
	<i>S. tenuifolia</i> Fisch	C ₃	H	GL WL
	<i>Spiraea aquilegifolia</i> Pall.	C ₃	N	FO
Rubiaceae	<i>Galium verum</i> L.	C ₃	H	GL
Rutaceae	<i>Haplophyllum dauricum</i> Juss	C ₃	H	GL
Saxifragaceae	<i>Ribes diacantha</i> Pall.	C ₃	N	FO
Scrophulariaceae	<i>Cymbalaria dahurica</i> L.	C ₃	H	SS GL DB
	<i>Linaria vulgaris</i> Mill.	C ₃	H	GL
	<i>Pedicularis rubens</i> Steph. ex Willd.	C ₃	H	DB WL
	<i>Veronica incana</i> L.	C ₃	H	SS DB
	<i>V. linearifolia</i> Pall.	C ₃	H	SS DB
Solanaceae	<i>Datura stramonium</i> L.	C ₃	Th	DB
	<i>Solanum nigrum</i> L.	C ₃	Th	DB
Thymelaeaceae	<i>Diarthron linifolium</i> Turcz.	C ₃	Th	SS
	<i>Stellera chamajiasme</i> L.	C ₃	H	SS GL
Umbelliferae	<i>Bupleurum chinense</i> DC.	C ₃	H	GL FO
	<i>B. scorzonerifolium</i> Willd.	C ₃	H	SS GL FO
	<i>Carlesia sinensis</i> Dunn	C ₃	H	SS
	<i>Heracleum moellendorffii</i> Hance	C ₃	H	SS
	<i>Sphallerocarpus gracilis</i> (Bess.) K.	C ₃	H	GL SS
	<i>Siler divaricatum</i> Benth. et Hook	C ₃	G	GL SS
Urticaceae	<i>Urtica cannabina</i> L.	C ₃	H	DB WL
Violaceae	<i>Viola dissecta</i> Ledeb.	C ₃	H	GL
Zygophyllaceae	<i>Tribulus terrestris</i> L.	C ₄	Th	DB
Monocotyledoneae				
Commelinaceae	<i>Commelina communis</i> L.	C ₄	Th	DB
Cyperaceae	<i>Bolboschoenus compactus</i> Heffm.	C ₃	HH	WL
	<i>Carex duriuscula</i> C.A.M.	C ₃	H	GL WL
	<i>C. lanceolata</i> Boott	C ₃	H	GL
	<i>C. pediformis</i> C.A.M.	C ₄	H	GL
	<i>Cyperus difformis</i> L.	C ₃	H	GL WL
	<i>C. fuscus</i> L.	C ₃	H	GL WL
	<i>C. glomeratus</i> L.	C ₄	Th	WL GL
	<i>C. orthostachyus</i> Franch. et Sav.	C ₃	H	GL WL
	<i>Scirpus tabernaemontani</i> Gmel.	C ₃	HH	WL
Gramineae	<i>Achnatherum sibiricum</i> (L.) Keng	C ₃	H	GL
	<i>A. splendens</i> (Trin.) Nevski	C ₄	H	GL
	<i>Agropyron cristatum</i> (L.) Gaertner	C ₃	H	GL SS
	<i>A. desertorum</i> (Fisch.) Schult.	C ₃	H	SS GL
	<i>Agrostis alba</i> L.	C ₃	H	GL DB
	<i>Alopecurus pratensis</i> L.	C ₃	Th	DB
	<i>Arthraxon hispidus</i> (Thunb.) Makino	C ₄	H	DB WL
	<i>Arundinella hirta</i> (Thunb.) Tanaka	C ₄	H	GL WL
	<i>Avena fatua</i> L.	C ₃	Th	DB
	<i>Beckmannia syzigachne</i> (Steud.) Fern.	C ₃	Th	GL
	<i>Bromus inermis</i> Leyss.	C ₃	H	GL
	<i>Calamagrostis epigeios</i> (L.) Roth	C ₃	H	GL WL
	<i>C. macrolepis</i> Litv.	C ₃	H	GL
	<i>Chloris virgata</i> Sw.	C ₄	Th	GL WL
	<i>Cleistogenes chinensis</i> (Maxim.) Keng	C ₄	H	GL
	<i>C. squarrosa</i> (Trin.) Keng	C ₄	H	GL
	<i>Clinelymus sibiricus</i> (L.) Nevski	C ₃	H	GL
	<i>Deschampsia caespitosa</i> (L.) Beauv.	C ₃	H	GL

Table 1 (continued)

	Species	C ₃ / C ₄	Life form	Habitat
Gramineae (cont.)	<i>Digitaria ciliaris</i> (Rotz.) Koel.	C ₄	Th	DB
	<i>D. ischaemum</i> (Schreb.) Schreb. ex Muhl.	C ₄	Th	DB
	<i>Echinochloa crusgalli</i> (L.) Beauv.	C ₄	Th	DB WL
	<i>E. crusgalli</i> (L.) Beauv. var. <i>caudata</i> Kitag.	C ₄	Th	DB WL
	<i>Eragrostis pilosa</i> (L.) P.B.	C ₄	Th	DB
	<i>E. poaeoides</i> Beauv.	C ₄	Th	DB GL
	<i>Eriochloa villosa</i> (Thunb.) Kunth L.	C ₄	Th	DB
	<i>Festuca ovina</i> L.	C ₃	H	GL
	<i>Hemarthria compressa</i> R.Br. var. <i>fasciculata</i> Keng	C ₄	HH	WL
	<i>Hierochloe glabra</i> Trin.	C ₃	H	GL
	<i>Hordeum brevisubulatum</i> (Trin.) Link	C ₃	H	GL
	<i>Koeleria cristata</i> (L.) Pers.	C ₃	H	GL
	<i>Leymus chinensis</i> (Trin.) Tzvel	C ₃	H	GL
	<i>L. dasystachys</i> (Trin.) Nevski	C ₃	H	GL
	<i>Miscanthus sacchariflorus</i> (Maxim.) Hack.	C ₄	H	GL SS
	<i>Panicum ruderale</i> (Kitag.) Cheng	C ₄	Th	DB
	<i>Pennisetum flaccidum</i> Griseb.	C ₄	G	SS DB
	<i>Phleum phleoides</i> (L.) Simk.	C ₃	H	GL
	<i>Phragmites communis</i> Trin.	C ₃	HH	WL
	<i>Poa pratensis</i> L.	C ₃	H	GL
	<i>Puccinellia chinampoensis</i> Ohwi.	C ₃	H	GL
	<i>P. jeholensis</i> Kitag.	C ₃	H	GL
	<i>P. tenuiflora</i> (Turcz.) Scrib. et Merr.	C ₃	H	GL WL
	<i>Roegneria ciliaris</i> (Trin.) Nevski	C ₃	H	GL
	<i>R. kamoji</i> Ohwi	C ₃	H	GL
	<i>Setaria lutescens</i> (Weigel) F.T. Hubb.	C ₄	Th	DB
	<i>S. viridis</i> (L.) Beauv.	C ₄	Th	DB
	<i>Spodiopogon sibiricus</i> Trin.	C ₄	Th	GL FO
	<i>Stipa baicalensis</i> Roshev.	C ₃	H	GL
	<i>S. grandis</i> P. Smirn.	C ₃	H	GL
	<i>S. krylovii</i> Roshev.	C ₃	H	GL SS
	<i>Tripogon chinensis</i> (Fr.) Hack.	C ₃	H	GL SS
Iridaceae	<i>Iris dichotoma</i> Pall.	C ₃	G	GL DB
	<i>I. pallasii</i> Fisch.	C ₃	G	GL
	<i>I. ruthenica</i> Ker-Gawl.	C ₃	G	GL
	<i>I. tenuifolia</i> Pall.	C ₃	G	GL SS
	<i>I. ventricosa</i> Pall.	C ₃	G	GL
Liliaceae	<i>Allium condensatum</i> Turcz.	C ₃	G	GL
	<i>A. macrostemon</i> Bunge	C ₃	G	DB
	<i>A. polystachys</i> Turcz.	C ₃	G	GL DB
	<i>A. senescens</i> L.	C ₃	G	GL
	<i>A. tenuissimum</i> L.	C ₃	G	GL
	<i>Anemarrhena asphodeloides</i> Bunge	C ₃	G	GL SS
	<i>Asparagus davarica</i> Fisch.	C ₃	G	SS
	<i>Lilium tenuifolium</i> Fisch.	C ₃	G	GL
	<i>Scilla thunbergii</i> Miyabe et Kudo	C ₃	G	GL WL
Typhaceae	<i>Typha minima</i> Funk	C ₃	HH	WL

was found in each of the geophyte (G), chamaephyte (Ch), and hydrogeophyte (HH) forms, even though there were generally 48 species in the G form. No C₄ species was found in macrophanerophyte (M) and nanophanerophyte (N) forms in the Hulunbeier rangelands.

Photosynthetic pathway type compositions were consistent with habitat conditions in Hulunbeier rangelands (Fig. 2). Of the total 258 species, 162 species (63 %)

were found distributed in grasslands, e.g. meadow and steppe, 9 % of the grassland species were C₄ plants. 79 species were distributed in sandy soil, e.g. in fixed dunes and mobile dunes, and only 8 % were C₄ species. However, 30 and 20 % of the species distributed in disturbed land (69 species) and wetland (35) were found with C₄ photosynthesis, respectively. The occurrence of C₄ species in forest habitats was less than 9 % in the region.

Relatively more C_4 species in disturbed land suggested that this type plants have greater tolerance to environmental stress, because the disturbed land may be

characterized by a lower soil moisture, poor nutrition, and higher evaporation.

Discussion

Hulunbeier rangeland region is one of the important rangeland regions in north China, due to its large and high quality pastures (Zhang and Liu 1992). Scientific studies on the rangelands, however, were much less common than those on the Xilingol steppes and the Songnen grasslands. This might lead to blindness in making rangeland management decisions. The identification of photosynthetic pathway and plant life form types may bring new information for better understanding the rangelands and rangeland management decisions. Complicated relief (elevation range of 600–1 000 m) and vegetation types (e.g. forests, meadows, and steppes) in the region may result in relatively large species abundance: 1 380 vascular plant species in 570 genera and 108 families were identified in the rangeland region. The total number

2002c,d), but 12 % less than in the Songnen grasslands (Wang 2002c). In general, the occurrence and the relatively large species abundance of C_4 plants was common, identified in 10 families and 28 genera, in the Hulunbeier rangelands. This was mainly due to greater tolerance of C_4 species to environmental stress and greater ability to maintain intense photosynthesis during dry season (Redmann *et al.* 1995, Wang 2002b). 74 % of the total identified C_4 species was found in *Gramineae* and *Chenopodiaceae*, indicating that C_4 species occurred mainly in few families in the region. *Gramineae* was the leading family with C_4 photosynthesis and *Chenopodiaceae* ranked the second, this is much consistent with researches conducted in Xilingol steppes and Hunshandake desert (Wang 2002a,d). No endemic C_4 species was identified in Hulunbeier rangelands, but more than 200 species in the genera with C_4 plants have not been determined yet.

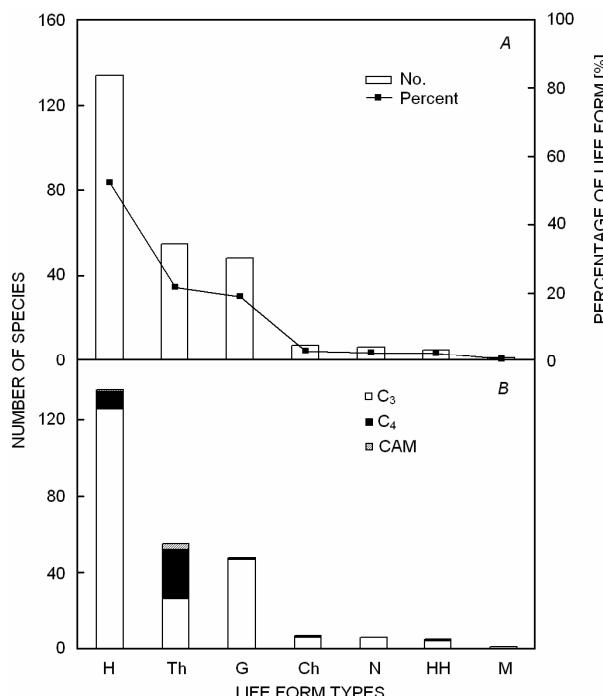


Fig. 1. The life form types (H = hemicryptophyte, G = geophyte, Th = therophyte, Ch = chamaephyte, M = macrophanerophyte, N = nanophanerophyte, HH = hydrogeophyte) (A) and photosynthetic pathway compositions in each life form type (B) in Hulunbeier rangelands, Inner Mongolia, China.

of native plant species in Hulunbeier rangelands was 1.8 and 2.2 times higher than that in the Songnen grasslands and Xilingol steppes, respectively. High species abundance may result in relative large abundance of C_4 species (38 species), which was much greater (52 %) than in the Xilingol steppes and Hunshandake desert (Wang

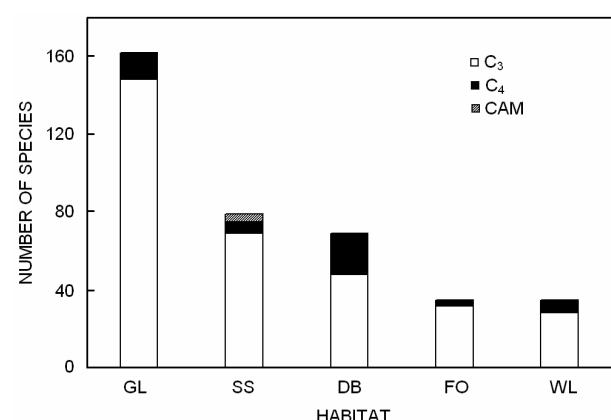


Fig. 2. The variations of photosynthetic pathway types in different habitats (GL = grassland, SS = sandy soil, DB = disturbed land, FO = frost, WL = wet land) in Hulunbeier rangelands, Inner Mongolia, China.

Plant life form composition was consistent with climate, floristic composition, and habitats (Li 1979, Wang 2002c,d). Of the total 258 species identified in Hulunbeier rangelands, 54 % was in the H form. This was mainly due to the moist climate, high composition of graminaceous plants (grass and sedge) for grassland and forest vegetation types, because more than 60 % of the total plants were of the H form in grasslands and grassland-forest ecotones (Li 1979, Wang 2002a,b). 21 % of the total species in Table 1 was in the Th form, which was somewhat less than in the Xilingol steppes and the Songnen grassland, but a half of the Th form species had C_4 photosynthesis. Relatively greater abundance of Th

form C₄ species in the region may be mainly due to their greater ability to survive the harsh environment, *e.g.* drought and cold, and higher capacity to maintain intense photosynthesis (Wang 2002a,b,c). The proportion of geophyte (G) form (17 %) in the Hulunbeier rangelands was much greater than in the other rangelands of north China. This may also be consistent with the cold climate of the region because the G form represents an advantage for plants to survive the long and cold winter (Li 1979). Few macrophanerophyte (M) and nanophanerophyte (N) form species, *e.g.* *Betula dahurica* Pall., *Caragana microphylla* Lam., *C. stenophylla* Pojark., and *Spiraea aquilegifolia* Pall., were found widely distributed in the rangelands, and most of these species were shrubs, with small leaves and great tolerance to dryness or seasonal dryness (Li 1979, Pan 1992, Wang 2002b). Unlike in the steppe region in Inner Mongolia (Wang 2003), there were some hydrogeophyte (HH) form plants in Hulunbeier rangelands, due to the relatively more precipitation in the east

or the grassland-forest ecotones. This suggests that the moisture condition in this type of rangelands was better than in the steppes or deserts in Inner Mongolia.

Photosynthetic pathway types, especially the occurrence of C₄ species, could be efficient indicators for rangeland dynamics (Wang 2002c). In Hulunbeier rangelands more than 55 % of the total C₄ species can be found in disturbed lands, and all CAM species in sandy soils. These C₄ plants are the succession pioneers because of their greater tolerance to dry, saline, and poor soils (Yin and Li 1997) and high capacity for seed production and diffusion (Wang 2002a,b). CAM plants, *e.g.* *Orostachys fimbriatus* (Turcz.) Berger, *O. malacophyllus* (Pall.) Fisch., and *O. malacophyllus* (Pall.) Fisch., could tolerate extreme drought in sandy soil conditions, *e.g.* fixed dunes and mobile dunes. These two types of plants are useful indicators for rangeland successions and management evaluations in Hulunbeier rangelands.

References

Chen, M.J., Jia, S.X. (ed.): [Forage Plants in China.] – China Agriculture Press, Beijing 2002. [In Chin.]

Collatz, G.J., Berry, J.A., Clark, J.S.: Effects of climate and atmospheric CO₂ partial pressure on the global distribution of C₄ grasses: present, past, and future. – *Oecologia* **114**: 441-454, 1998.

Collins, R.P., Jones, M.B.: The influence of climatic factors on the distribution of C₄ species in Europe. – *Vegetatio* **64**: 121-129, 1985.

Commissione Redactorum Flora Intramongolicae: Flora Intramongolica. Vol. 1-5. – Inner Mongolian Press, Huhehaote 1980. [In Chin.]

Downton, W.J.S.: The occurrence of C₄ photosynthesis among plants. – *Photosynthetica* **9**: 96-105, 1975.

Li, J.D.: [Basic plant life form in the Northeastern grasslands in China.] – *J. Jilin normal Univ.* **2**: 143-155, 1979. [In Chin.]

Li, M.: [List of plants with C₄ photosynthesis.] – *Plant physiol. Commun.* **29**: 148-159, 221-240, 1993. [In Chin.]

Li, S.Y., Xiao, Y.F.: [Primary dividing of grazing stages in *Leymus chinensis* grassland in Muodamiji, Hulunbeier, Inner Mongolia.] – *Acta phytoccol. geobot. sin.* **3**: 200-207, 1965. [In Chin.]

Pan, X.Q. (ed.): [Hulunbeier Grassland in China.] – Jilin Science and Technology Press, Changchun 1992. [In Chin.]

Pyankov, V.I., Gunin, P.D., Tsoog, S., Black, C.C.: C₄ plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. – *Oecologia* **123**: 15-31, 2000.

Raghavendra, A.S., Das, V.S.R.: The occurrence of C₄-photosynthesis: A supplementary list of C₄ plants reported during late 1974-mid 1977. – *Photosynthetica* **12**: 200-208, 1978.

Redmann, R.E., Yin, L., Wang, P.: Photosynthetic pathway types in grassland plant species from Northeast China. – *Photosynthetica* **31**: 251-255, 1995.

Takeda, T., Hakoyama, S.: Studies on the ecology and geographical distribution of C₃ and C₄ grasses. 2. Geographical distribution of C₃ and C₄ grasses in far east and south east Asia. – *Jap. J. Crop Sci.* **54**: 65-71, 1985.

Teeri, J.A., Stowe, L.G.: Climatic patterns and the distribution of C₄ grasses in North America. – *Oecologia* **23**: 1-12, 1976.

Teeri, J.A., Stowe, L.G., Livingstone, D.A.: The distribution of C₄ species of the *Cyperaceae* in North America in relation to climate. – *Oecologia* **47**: 307-310, 1980.

Ueno, O., Takeda, T.: Photosynthetic pathways, ecological characteristics, and the geographical distribution of the *Cyperaceae* in Japan. – *Oecologia* **89**: 195-203, 1992.

Wang, R.Z.: Photosynthetic pathway types of forage species along grazing gradient from the Songnen grassland, Northeastern China. – *Photosynthetica* **40**: 57-61, 2002a.

Wang, R.Z.: The C₄ photosynthetic pathway and life forms in grassland species from North China. – *Photosynthetica* **40**: 97-102, 2002b.

Wang, R.Z.: Photosynthetic pathways and life forms in different grassland types from North China. – *Photosynthetica* **40**: 243-250, 2002c.

Wang, R.Z.: Photosynthetic pathways, life forms and reproductive types for forage species along the desertification gradient on Hunshandake desert, North China. – *Photosynthetica* **40**: 321-329, 2002d.

Wang, R.Z.: Photosynthetic pathway and morphological functional types in the steppe vegetation from Inner Mongolia, North China. – *Photosynthetica* **41**: 143-150, 2003.

Williams, G.J., III, Markley, J.L.: The photosynthetic pathway type of North America shortgrass prairie species and some ecological implications. – *Photosynthetica* **7**: 262-270, 1973.

Yin, L., Li, M.: [A study on the geographic distribution and ecology of C₄ plants in China. C₄ plant distribution in China and their relation with regional climatic condition.] – *Acta ecol. sin.* **17**: 350-363, 1997. [In Chin.]

Zhang, Z.T., Liu, Q.: [Rangeland Resources of the Main Pasture Areas in China and Their Development and Utilization.] – China Science and Technology Press, Beijing 1992. [In Chin.]

Zhu, T.C.: Grasslands of China. – In: Coupland, R.T. (ed.): Natural Grasslands – Eastern Hemisphere and Resumé. Vol. 8B. Pp. 61-82. Elsevier, Amsterdam 1993.