

Photosynthetic pathway types in rangeland plant species from Inner Mongolia, North China

X.Q. LIU*, R.Z. WANG*, and Y.Z. LI**

Laboratory of Quantitative Vegetation Ecology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China^{*}

Institute of Agro-Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, China^{**}

Abstract

Photosynthetic pathway types, based on $\delta^{13}\text{C}$ measurements, were determined for 125 species in 95 genera and 32 families growing in rangelands from Inner Mongolia. Of the total species, 4 species from 3 genera and 2 families had C₄ photosynthesis (2 species in *Gramineae* and 2 in *Chenopodiaceae*) and 118 species from 90 genera and 31 families had C₃ photosynthesis. The number of C₄ species differed significantly among four rangeland sites, 4 species in desert, 3 species in steppe, but no C₄ species were identified in meadow and dune. Six species [e.g. *Agriophyllum arenarium* Bieb., *Bassia dasypylla* O. Kuntze, *Saussurea japonica* (Thunb.) DC.] earlier identified as C₄ species using the enzyme ratio method were found as C₃ species using the carbon isotope ratios ($\delta^{13}\text{C}$). Hence the enzyme ratio method for C₃ and C₄ identification may not always be reliable. The $\delta^{13}\text{C}$ values of 3 species of *Crassulaceae*, which had been considered as CAM species, differed remarkably [−25.79 ‰ for *Sedum aizoon* L., −24.42 ‰ for *Osostachys fimbriatus* (Turcz.) Berger, and −16.97 ‰ for *O. malacophyllum* (Pall.) Fisch], suggesting that the use of $\delta^{13}\text{C}$ method as a diagnosis for CAM photosynthetic pathway type may not always be reliable and supplementary measurements are needed.

Additional key words: C₃, C₄, and CAM plants; carbon isotope ratio; Xilingol steppe; $\delta^{13}\text{C}$.

Introduction

Photosynthetic pathway type is not only the basis for studying plant functional types, but also relates with ecological processes, e.g. community succession, climate changes (Collatz *et al.* 1998, Wang 2003d), as well as bridges the micro-ecology and macro-ecology. C₄ plant identification began with the works of Downton and Tregunna (1968) and Black (1971), and more than 1 700 C₄ plants have been identified worldwide (Li 1993). It is expected that approximately one-half of the 10 000 grass species and a thousand of the 165 000 *Dicotyledoneae* in the world have C₄ photosynthetic pathway (Hattersley 1987, Ehleringer *et al.* 1997) indicating that only 1/3 of the C₄ species was identified and the other 2/3 remains unclear. Various methods, e.g. carbon isotope ratio ($\delta^{13}\text{C}$), "Kranz" type leaf anatomy, low CO₂ compensation concentration, and photosynthetic enzyme ratio, have been used for photosynthetic pathways classification, but many studies suggested that the carbon isotope ratio method is most reliable (Redmann *et al.* 1995).

Desert and steppe are two typical rangeland vegetations in Inner Mongolia, North China. Superior both in quality and quantity of herbage production in the usual growing condition of the rangelands make them best suited for livestock grazing. Many studies of local flora, community classification, plant biomass, and photosynthetic pathways have been conducted in the region, but systematic research on identification of C₃, C₄, and CAM species by using carbon isotope ratio in the rangelands has not been done. Photosynthetic pathways are important linkages between plant species and ecosystems, and rangeland management decisions must take into account their knowledge which is closely related to seasonal development patterns (warm season *versus* cool season).

The objective of this study was to determine C₃ and C₄ photosynthetic pathways from rangelands in Inner Mongolia by using carbon isotope ratio and to uncover the relationship between pathway type and plant habitats.

Received 26 April 2004, accepted 2 June 2004.

Fax: 0086-01-82591781; e-mail: liuxq80@hotmail.com

Acknowledgments: We are grateful for the fund provided by National Key Basic Research Special Foundation Project (NKBRSF project G2000018607) and in part by Key Projects of Knowledge Innovation of the Chinese Academy of Sciences (KSCX2-SW-107).

The results may help in studying the correlation of range-land species composition with ecosystem, climate varia-

Materials and methods

The study was conducted in typical desert and steppe vegetations in Xilingol rangelands ($41^{\circ}35' - 46^{\circ}46'N$, $111^{\circ}09' - 119^{\circ}58'E$), which is part of Mongolian plateau, and covers about 200 000 km² area, with average 1 200 m above sea level, varying from 900 m in the north-east to 1 300 m in the south-west. Most of the rangelands have chestnut, chernozem, and sandy soils. Located in semi-arid area of mid-temperate zone, the rangelands have the characteristics of temperate steppe climate, with air temperature and precipitation varying sharply all round the year. Mongolia anticyclone and moist Pacific air mass are the two major factors determining the climate type in this region. The sharp gradient between the high-pressure and Aleutian low-pressure system bring a strong westerly flow of cold, dry continental air at the surface. As the anticyclone breaks down in spring, the rangeland region comes increasingly under the influence of moist Pacific air mass, reaching a climax in the summer monsoon, which lasts 2-3 months. The typical climate characteris-

bles, and grazing management.

tics of the region are: cold dry and frequently windy spring; warm and wet summer, but with possible seasonal droughts, early autumn frosts, and long cold winter with less snowfall. The mean annual air temperature ranges from 0 to 3 °C, varying from -21 °C in January to 21 °C in July. Moisture gradient is very steep, with annual precipitation varying from 100 mm in the western desert to 400 mm in the eastern meadow. Precipitation mainly falls between June and August over the growing season.

Four types of sites, *e.g.* meadow, steppe, desert, and dune, were selected for the plant sampling. Shoot tissue was collected from field-grown plants, dried at 80 °C for 48 h, and ground. Stable carbon isotope ratio ($\delta^{13}\text{C}$) in the plant tissue was determined by using *Delta^{plus} XP* mass spectrograph. Plants with $\delta^{13}\text{C}$ values above -19 ‰ were considered to have C₄ photosynthetic pathway, and with $\delta^{13}\text{C}$ values less than -21 ‰ to have C₃ photosynthesis (Smith and Brown 1973) (Table 1).

Table 1. Photosynthetic pathway types (C_3 , C_4) in species from rangelands of Inner Mongolia, North China. Nomenclature follows Redmann *et al.* (1995). Habitats: ME = meadow, TS = typical steppe, DS = desert and DU = dune.

Species		$\delta^{13}\text{C}$ [‰]	C_3/C_4	Habitat
<i>Gymnospermae</i>				
<i>Ephedraceae</i>	<i>Ephedra sinica</i> Stapf	−24.449	C_3	DS
<i>Angiospermae</i>				
<i>Dicotyledoneae</i>				
<i>Asclepiadaceae</i>	<i>Cynanchum thesioides</i> (Freyn) K. Schum.	−25.167	C_3	DS
<i>Boraginaceae</i>	<i>Lappula redowskii</i> (Horn) Green	−28.594	C_3	TS
<i>Campanulaceae</i>	<i>Adenophora stenanthina</i> (Ledeb.) Kitag.	−26.560	C_3	ME
<i>Caryophyllaceae</i>	<i>Dianthus chinensis</i> L.	−25.734	C_3	ME
	<i>Silene repens</i> Patr.	−25.765	C_3	ME
<i>Chenopodiaceae</i>	<i>Agriophyllum arenarium</i> Bieb.	−25.340	C_3	DU
	<i>Axyris amaranthoides</i> L.	−26.691	C_3	TS
	<i>Bassia dasypylla</i> O. Kuntze	−25.113	C_3	DS
	<i>Chenopodium aristatum</i> L.	−26.148	C_3	TS
	<i>Ch. glaucum</i> L.	−27.213	C_3	TS
	<i>Corispermum declinatum</i> Steph. ex Stev.	−26.841	C_3	DU
	<i>Kochia prostrata</i> (L.) Schrad.	−14.036	C_4	TS DS
	<i>Salsola collina</i> Pall.	−11.400	C_4	TS DS
<i>Compositeae</i>	<i>Artemisia annua</i> L.	−27.306	C_3	ME
	<i>A. dracunculus</i> L.	−26.941	C_3	ME
	<i>A. eriopoda</i> Bunge	−27.669	C_3	ME
	<i>A. frigida</i> Willd.	−28.125	C_3	TS DS ME
	<i>A. intramongolica</i> H.C. Fu.	−25.840	C_3	DU
	<i>A. oxycephala</i> Kitag.	−25.783	C_3	DU
	<i>A. pectinata</i> Pall. [<i>Neopallasia pectinata</i> (Pall.) Polsak.]	−24.204	C_3	DS
	<i>A. scoparia</i> Waldst et Kit	−27.869	C_3	DS
	<i>Aster alpinus</i> L.	−28.003	C_3	ME

Table 1 (continued)

	Species	$\delta^{13}\text{C}$ [%]	C_3/C_4	Habitat
Compositae	<i>Filifolium sibiricum</i> (L.) Kitam.	-26.835	C_3	ME
	<i>Heteropappus altaicus</i> (Willd.) Novopokr.	-26.895	C_3	DS
	<i>Hieracium umbellatum</i> L.	-27.424	C_3	ME
	<i>Ixeris chinensis</i> (Thunb.) Nakai subsp. <i>graminifolia</i> (Ledeb.) Kitag.	-26.835	C_3	DU
	<i>Ligularia mongolica</i> (Turcz.) DC.	-26.900	C_3	ME
	<i>Olgaea leucophylla</i> (Turcz.) Iijin	-27.205	C_3	TS ME
	<i>Saussurea japonica</i> (Thunb.) DC.	-27.258	C_3	TS ME
	<i>Scorzonera austriaca</i> Willd.	-25.373	C_3	ME
	<i>Serratula coronata</i> L.	-28.079	C_3	TS ME
	<i>Stemmacantha uniflora</i> (L.) Dittrich	-27.720	C_3	ME
Convolvulaceae	<i>Convolvulus ammannii</i> Desr.	-25.271	C_3	DS
	<i>C. arvensis</i> L.	-25.271	C_3	DS
Crassulaceae	<i>Osostachys fimbriatus</i> (Turcz.) Berger	-24.420	C_3	ME
	<i>O. alacophyllum</i> (Pall.) Fisch	-16.965	C_4	TS DU
	<i>Sedum aizoon</i> L.	-25.788	C_3	ME
Cruciferae	<i>Dontostemon micranthus</i> C.A. Mey.	-25.534	C_3	TS
	<i>Lepidium apetalum</i> Willd.	-25.478	C_3	TS
	<i>Ptilotrichum tenuifolium</i> (Steoh) C.A. Mey.	-26.524	C_3	TS
Dipsacaceae	<i>Scabiosa comosa</i> Fisch. ex Roemer Schult	-26.600	C_3	DU
	<i>S. tschiliensis</i> Crrunning	-27.039	C_3	ME
Labiatae	<i>Lagochilus ilicifolius</i> Bungein	-25.895	C_3	DS
	<i>Phlomis tuberosa</i> L.	-25.942	C_3	TS
	<i>Schizonepeta multifida</i> (L.) Briq.	-27.520	C_3	TS ME
	<i>Scutellaria baicalensis</i> Georgi	-26.989	C_3	ME
Leguminosae	<i>S. scordifolia</i> Fisch. ex Schrank	-27.544	C_3	DU
	<i>Astragalus melilotoides</i> Pall.	-26.466	C_3	ME
	<i>Caragana microphylla</i> Lam.	-24.483	C_3	TS
	<i>C. stenophylla</i> Pojark.	-24.572	C_3	DS
	<i>Hedysarum fruticosum</i> Pall. var. <i>lignosum</i> (Trautv.) Kitag.	-27.416	C_3	DU
	<i>Medicago falcate</i> L.	-27.096	C_3	ME
	<i>Melilotoides ruthenia</i> (L.) Sojak	-26.956	C_3	DU
	<i>Oxytropis myriophylla</i> (Pall.) DC.	-27.481	C_3	ME
	<i>Thermopsis lanceolata</i> R. Br.	-25.873	C_3	TS ME
Linaceae	<i>Trifolium lupinaster</i> L.	-25.314	C_3	ME
	<i>Vicia multicaulis</i> Ldb.	-25.629	C_3	ME
Urticaceae	<i>V. unijuga</i> R. Br.	-24.735	C_3	ME
	<i>Linum perenne</i> L.	-25.604	C_3	TS
Papaveraceae	<i>Urtica cannabina</i> L.	-26.725	C_3	DU
	<i>Papaver nudicaule</i> L.	-28.050	C_3	DU
Plumbaginaceae	<i>Limonium bicolor</i> (Bunge) Q. Kuntze	-30.125	C_3	TS
	<i>Polygonum divaricatum</i> L.	-26.855	C_3	TS ME DU
Polygonaceae	<i>Polygonum viviparum</i> L.	-27.345	C_3	SS
	<i>Rheum undulatum</i> L.	-28.628	C_3	ME
	<i>Clematis hexapetala</i> Pall.	-24.343	C_3	ME
Ranunculaceae	<i>Pulsatilla turczaninovii</i> Kryl. et Serg.	-26.770	C_3	ME
	<i>Thalictrum petaloideum</i> L.	-27.685	C_3	TS ME
	<i>Th. squarrosum</i> Steh. ex Willd.	-26.134	C_3	ME
	<i>Delphinium grandiflorum</i> L.	25.878	C_3	ME
	<i>Prunus sibirica</i> L.	-25.360	C_3	DU
Rosaceae	<i>Potentilla acaulis</i> L.	-27.263	C_3	TS ME
	<i>P. betonicaefolia</i> Poir	-25.330	C_3	ME
	<i>P. bifurca</i> L.	-25.565	C_3	ME TS

Table 1 (continued)

	Species	$\delta^{13}\text{C}$ [%]	C_3/C_4	Habitat
Rosaceae	<i>P. nudicaulis</i> Willd.	-26.201	C_3	ME
	<i>P. tanacetifolia</i> Willd. ex Schlecht	-26.852	C_3	ME TS
	<i>P. verticillaris</i> Steph. ex Willd.	-26.609	C_3	ME
	<i>Sanguisorba officinalis</i> L.	-26.758	C_3	ME
	<i>Spiraea aquilegifolia</i> Pall.	-27.571	C_3	TS ME ME
Rubiaceae	<i>Galium verum</i> L.	-25.810	C_3	TS ME
Rutaceae	<i>Haplophyllum dauricum</i> (L.) Juss.	-27.040	C_3	TS DS
Saxifragaceae	<i>Ribes diacanthum</i> Pall.	-27.934	C_3	DU
Scrophulariaceae	<i>Cymbalaria dahurica</i> L.	-27.768	C_3	TS ME
	<i>Linaria vulgaris</i> Mill.	-27.748	C_3	ME
	<i>Pedicularis striata</i> Pall.	-27.771	C_3	ME
	<i>Veronica linariifolia</i> Pall. ex Link	-27.124	C_3	ME
Thymelaeae	<i>Stellera chamaejasme</i> L.	-25.780	C_3	ME
Umbelliferae	<i>Bupleurum scorzonerifolium</i> Willd.	-25.800	C_3	ME TS
	<i>Peucedanum rigidum</i> Bunge	-24.595	C_3	DS DU
	<i>Siler divaricatum</i> Benth. et Hook.	-26.620	C_3	DS ME
	<i>Sphallerocarpus gracilis</i> (Bess.) K. Pol.	-23.913	C_3	ME
Valerianaceae	<i>Patrinia rupestris</i> Juss.	-26.144	C_3	ME
Zygophyllaceae	<i>Peganum harmala</i> L.	-23.361	C_3	DS
Monocotyledoneae				
Cyperaceae	<i>Carex duriuscula</i> C.A. Mey.	-24.354	C_3	TS
	<i>C. pediformis</i> C.A. Mey.	-25.257	C_3	ME
	<i>C. korshinskyi</i> Kom.	-25.831	C_3	TS
Gramineae	<i>Achnatherum sibiricum</i> (L.) Keng	-25.731	C_3	ME
	<i>Agropyron cristatum</i> (L.) Gaertn.	-27.157	C_3	TS DS ME
	<i>Bromus inermis</i> Leyss.	-24.882	C_3	ME
	<i>Cleistogenes squarrosa</i> (Trin.) Keng	-14.639	C_4	TS
	<i>C. songorica</i> (Roshev.) Ohwi	-14.757	C_4	DS
	<i>Elymus dahuricus</i> Turcz.	-25.145	C_3	ME
	<i>Festuca rubra</i> L.	-27.089	C_3	ME
	<i>Koeleria cristata</i> (L.) Pers.	-26.347	C_3	ME
	<i>Leymus chinensis</i> (Trin.) Tzvel.	-26.008	C_3	TS ME
	<i>Poa pratensis</i> L.	-24.635	C_3	ME
	<i>Psammochloa villosa</i> (Trin.) Bor	-28.118	C_3	DU
	<i>Stipa baicalensis</i> Roshev.	-25.920	C_3	ME
Iridaceae	<i>S. grandis</i> P. Smirn.	-26.541	C_3	TS
	<i>S. krylovii</i> Roshev.	-25.285	C_3	DS
	<i>Iris dichotoma</i> Pall.	-24.938	C_3	ME
	<i>I. lactea</i> Pall. var. <i>chinensis</i> (Fisch) Koidz.	-25.844	C_3	DS
Liliaceae	<i>I. tenuifolia</i> Pall.	-26.233	C_3	DU
	<i>I. ventricosa</i> Pall.	-26.078	C_3	ME
	<i>Allium bidentatum</i> Fisch. ex Prokh.	-25.140	C_3	DS
	<i>A. polystachys</i> Turcz.	-25.805	C_3	DS
	<i>A. ramosum</i> L.	-25.562	C_3	DS TS
	<i>A. senescens</i> L.	-25.179	C_3	DU
	<i>A. tenuissimum</i> L.	-26.089	C_3	DS
	<i>Anemarrhena asphodeloides</i> Bunge	-24.620	C_3	TS
	<i>Asparagus dauricus</i> Fisch. ex Link	-24.719	C_3	DS
	<i>Hemerocallis minor</i> Mill.	-25.811	C_3	ME
	<i>Veratrum nigrum</i> L.	-23.762	C_3	ME

Results

125 vascular plant species in 95 genera and 32 families, about 20 % of the total species in Xilingol rangelands, were examined for photosynthetic pathway types. Carbon isotope ratios indicative of C₄ photosynthesis were found in 4 species from 3 genera and 2 families, 2 were found in Gramineae [*Cleistogenes squarrosa* (Trin.) Keng and *C. songorica* (Roshev.) Ohwi] and the other two in Chenopodiaceae [*Kochia prostrata* (L.) Schrad. and *Salsola collina* Pall.]. 118 species from 90 genera and 31 families had C₃ photosynthesis. This suggested that the abundance of C₄ plants in these sample sites was very low, even the occurrence of C₄ species in the desert and steppe was common. Three species, *i.e.* *Osostachys fimbriatus* (Turcz.) Berger, *O. malacophyllum* (Pall.) Fisch, and *Sedum aizoon* L. in Crassulaceae had been considered as CAM photosynthesis, but their $\delta^{13}\text{C}$ values varied remarkably: -25.79‰ for *Sedum aizoon* L. and -24.42‰ for *O. fimbriatus* (Turcz.) Berger, while that for *O. malacophyllum* (Pall.) Fisch was -16.97‰ . Thus the identification of CAM photosynthetic pathway may need other supplementary measurements.

According to the literature, the photosynthetic pathways of more than 50 % of the total 125 species in Table 1, *e.g.* *Ephedra sinica* Stapf., *Corispermum declinatum* Steph. ex Stev., *Stemmacantha uniflora* (L.) Dittrich, *Scabiosa comosa* Fisch. ex Roemer Schult., were identified for the first time (Table 1). The following species, with C₃ carbon isotope ratios, had earlier been identified as C₄ based on phosphoenolpyruvate carboxylase : ribulose-1,5-bisphosphate carboxylase ratios (Yin and Li 1997, Wang 2002a,c): *Agriophyllum arenarium* Bieb., *Bassia dasypylla* O. Kuntze, *Saussurea japonica* (Thunb.) DC., *Thalictrum squarrosum* Steh. ex Willd., *Thermopsis lanceolata* R.Br., and *Carex pediformis* C.A.

Discussion

The identification of photosynthetic pathway types is the basic knowledge for studying the logical linkages between physiological and life-history strategies at plant level, and ecological process at ecosystem and global levels. The $\delta^{13}\text{C}$ value of plant tissue is diagnostic for photosynthetic pathways (Smith and Brown 1973) and is widely used as a criterion for C₃ and C₄ classification (Downton 1975, Li 1993, Redmann *et al.* 1995, Pyankov *et al.* 2000). 125 species from four sites were classified to their types of photosynthesis (Table 1): only 4 species were found with C₄ photosynthesis, while most species had C₃ photosynthesis. Relatively low amount of C₄ species identified in this study was mainly due to the small scale of sampling area (about 1 km²) and species abundance in the four sites, as well as the reduction of C₄ species which had earlier been identified as C₄ species, *e.g.* *Agriophyllum arenarium* Bieb., *Bassia dasypylla* O. Kuntze, *Saussurea japonica* (Thunb.) DC., *Thalictrum*

Mey. This suggests that the use of the enzyme ratio method as diagnosis for photosynthetic pathway type may not always be reliable and some previous results need to be corrected.

As for floristic composition of the total 125 species, 1 C₃ species was found in Gymnospermae, 124 species in Angiospermae, 94 species (about 25 % of the total Dicotyledoneae species in Xilingol rangelands) in 74 genera and 27 families were found in Dicotyledoneae, *e.g.* Compositae (20 species) Leguminosae (11 species), Rosaceae (9 species), and Chenopodiaceae (8 species), and they were the leading families with 48 species identified (about 51 % of the total 94 species in Dicotyledoneae). The other 23 families had a total of 46 species, less than 50 % of the total Dicotyledoneae species. 30 species in 19 genera and 4 families were identified in Monocotyledoneae, *e.g.* Gramineae (14 species), Liliaceae (9 species), Iridaceae (4 species), and Cyperaceae (3 species). These 30 species make up 16 % of the total Monocotyledoneae species in this region, indicating that the species abundance of Monocotyledoneae was smaller than that of Dicotyledoneae.

Four C₄ species were found in desert site and 3 in steppe site, but no C₄ species was identified in meadow and dune sites. The value of C₄/C₃ in desert site was two times that in the steppe site. This suggests that the occurrence of C₄ species was common in the more arid region. Meadow site had most species abundance, with 67 species (about 54 % of the total 125), in, *e.g.*, Composite (12 species), Gramineae (8 species), Leguminosae (7 species), and Rosaceae (6 species). However, only 36 species (about 29 %) and 26 species (21 %) were found in steppe and desert sites, respectively.

squarrosum Steh. ex Willd., *Thermopsis lanceolata* R.Br., and *Carex pediformis* C.A. Mey. This suggests that the use of stable carbon isotope ratio ($\delta^{13}\text{C}$) was more reliable for C₃ and C₄ identification and some of the previous classifications by using the enzyme, "Kranz" type leaf anatomy, and low CO₂ compensation concentration need to be modified.

Of the total 125 species, $\delta^{13}\text{C}$ values of 3 Crassulaceae species, which had been classified as CAM species (Wang 2002a), were remarkably different (Table 1). The $\delta^{13}\text{C}$ values for *Osostachys fimbriatus* (Turcz.) Berger and *Sedum aizoon* L. were less than -24.42‰ , while that for *O. malacophyllum* (Pall.) Fisch was -16.97‰ . We can not classify the 3 species into their photosynthetic pathway types by using the $\delta^{13}\text{C}$ values, and supplementary measurements, *e.g.* leaf acidometric titration in the morning and in the dusk (Lin *et al.* 1988) should be taken. This suggests that the use of carbon isotope ratio ($\delta^{13}\text{C}$)

method as diagnosis for CAM photosynthetic pathway type may not always be reliable and supplementary measurements are needed.

The changes of plant photosynthetic pathway composition are consistent with vegetation dynamics caused by nature and human activities, especially in grassland and deserts (Wang 2002a). Four C₄ species were found in desert site, 3 in steppe site, and no C₄ species was identified in meadow and dune sites. Of the 4 C₄ species identified in Table 1, two were xerophytic grass species [*Cleistogenes squarrosa* (Trin.) Keng and *C. songorica* (Roshev.) Ohwi] and the other two belonged to annual

Chenopodiaceae [*Kochia prostrata* (L.) Schrad. and *Salsola collina* Pall.]; this suggests that these species had greater tolerance to drought. Previous studies (Williams and Markley 1973, Wang 2002a,b,c) also clearly documented the importance of photosynthetic pathway types in predicting vegetation dynamics and the occurrence of C₄ species could be an indicator for both diagnosis of grassland conditions and management decisions. Future studies in North China could evaluate the responses of photosynthetic pathways to land use managements.

References

Black, C.C.: Ecological implications of dividing plants into groups with distinct photosynthetic production capacities. – In: Cragg, J.B. (ed.): Advances in Ecological Research. Vol. 7. Pp. 87-114. Academic Press, New York – London 1971.

Collatz, G.J., Berry, J.A., Clark, J.S.: Effects of climate and atmospheric CO₂ partial pressure on the global distribution of C₄ grasses: present, past, and future. – *Oecologia* **114**: 441-454, 1998.

Downton, W.J.S.: The occurrence of C₄ photosynthesis among plants. – *Photosynthetica* **9**: 96-105, 1975.

Downton, W.J.S., Tregunna, E.B.: Carbon dioxide compensation – its relation to photosynthetic carboxylation reactions, systematics of the Gramineae, and leaf anatomy. – *Can. J. Bot.* **46**: 207-215, 1968.

Ehleringer, J.R., Cerling, T.E., Helliker, B.R.: C₄ photosynthesis, atmospheric CO₂, and climate. – *Oecologia* **112**: 285-299, 1997.

Hattersley, P.W.: Variations in photosynthetic pathway. – In: Soderstrom, T.R., Hilu, K.W., Campbell, C.D.S., Barkworth, M.E. (ed.): Grass Systematics and Evolution. Pp. 49-64. Smithsonian Institute Press, Washington 1987.

Li, M.: [List of plants with C₄ photosynthesis.] – *Plant Physiol. Commun.* **29**: 148-159, 221-240, 1993. [In Chin.]

Lin, Z.F., Guo, J.Y., Ehleringer, J.: [New C₄ and CAM plants.] – *J. Wuhan bot. Res.* **6**: 371-374, 1988. [In Chin.]

Pyankov, V.I., Gunin, P.D., Tsoog, S., Black, C.C.: C₄ plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. – *Oecologia* **123**: 15-31, 2000.

Redmann, R.E., Yin, L., Wang, P.: Photosynthetic pathway types in grassland plant species from Northeast China. – *Photosynthetica* **31**: 251-255, 1995.

Smith, B.N., Brown, W.V.: The Kranz syndrome in the Gramineae as indicated by carbon isotopic ratios. – *Amer. J. Bot.* **60**: 505-513, 1973.

Wang, R.Z.: Photosynthetic pathways, life forms, and reproductive types for forage species along desertification gradient on Hunshandake desert, North China. – *Photosynthetica* **40**: 321-329, 2002a.

Wang, R.Z.: Photosynthetic pathway types of forage species along grazing gradient from the Songnen grassland, Northeastern China. – *Photosynthetica* **40**: 57-61, 2002b.

Wang, R.Z.: Photosynthetic pathways and life forms in different grassland types from North China. – *Photosynthetica* **40**: 243-250, 2002c.

Wang, R.Z.: Photosynthetic pathway and morphological functional types in the steppe vegetation from Inner Mongolia, North China. – *Photosynthetica* **41**: 143-150, 2003d.

Williams, G.J., III, Markley, J.L.: The photosynthetic pathway type of North American shortgrass prairie species and some ecological implications. – *Photosynthetica* **7**: 262-270, 1973.

Yin, L., Li, M.: [A study on the geographic distribution and ecology of C₄ plants in China. C₄ plant distribution in China and their relation with regional climatic condition.] – *Acta ecol. sin.* **17**: 350-363, 1997. [In Chin.]