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Abstract

Senescence-induced changes in the xanthophyll cycle activity and chlorophyll (Chl) fluorescence parameters were com-
pared in detached barley (Hordeum vulgare L.) leaf segments kept for 6 d in darkness or under continuous “white light”
(90 pmol m™ s7). Before detachment of the leaf segments, the plants were grown at periodic regime [12 h light (90 pmol
m? s")/12 h dark]. The de-epoxidation state of the xanthophyll cycle pigments (DEPS) in the leaf samples was deter-
mined immediately (the actual DEPS), after 1 h of dark-adaptation (the residual DEPS), and during 14 min of a high-ir-
radiance (HI) exposure (500 pmol m™ s) (HI-induced DEPS). In the light-senescing segments, senescence was delayed
pronouncedly compared to dark-senescing ones as the Chl content, the photosystem 2 photochemistry, and electron
transport processes were highly maintained. Further, the actual DEPS increased, probably due to the increased mean
photon dose. The Hl-induced increase in the DEPS was stimulated in the light-senescing segments, whereas it was
slowed down in the dark-senescing ones. However, after the 14 min HI-exposure of the dark-senescing segments the HI-
induced DEPS was not markedly lower than in the mature leaves, which indicated the maintenance of the xanthophyll
cycle operation.
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Introduction

Senescence of plant leaves is their final ontogenetic phase
(Sestak 1985), comprising many physiological, biochemi-
cal, and molecular events that occur in a highly controlled
manner (for reviews, see e.g. Grover and Mohanty 1993,
Smart 1994, Matile 2001). Leaf senescence is characteri-
zed by a decrease in the rate of photosynthesis. This de-
crease is caused mainly by a progressive loss of chloro-
phyll (Chl). However, it is also associated with a decline
in activities of photosystems and dark reactions of the
Calvin cycle. The senescence-induced inhibition of the
dark reactions (caused mainly by a decline in amounts
and activities of stromal enzymes, especially ribulose-
1,5-bisphosphate carboxylase/oxygenase) usually pre-
cedes a decrease in function of pigment-protein comple-
xes in thylakoid membranes (Camp et al. 1982, Grover
1993). Especially, the photosystem 2 (PS2) photochemis-
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try seems to be diminished rather slightly during senes-
cence of intact leaves (Lu and Zhang 1998a,b, Spundova
et al. 2003).

Senescence of plants grown under natural conditions
is significantly affected by many environmental factors,
especially by irradiance, temperature, nutrition, and water
supply, and by the periodic circadian irradiation. Compa-
red to the progressive senescence proceeding in darkness,
the moderate irradiance usually retards the degradation of
photosynthetic components (Thimann et al. 1977, Kar
et al. 1993, Klerk et al. 1993, Chang and Kao 1998) and
supports conservation of the photosynthetic activity (Kar
et al. 1993, Spundova et al. 2003). However, when irra-
diance exceeds some critical level, the senescence-indu-
ced changes are accelerated (Hidema et al. 1992, Kar
et al. 1993, Biswal 1995), most probably due to an
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increasing photo-oxidative damage to the photosynthetic
apparatus caused by over-excitation (Munné-Bosch and
Allegre 2002). Under field conditions, the protective and
deleterious effects of irradiation may appear successively
in a periodic manner.

One of the protective mechanisms of plants against
the over-excitation is the xanthophyll cycle, the reversible
conversion of violaxanthin (V) to antheraxanthin (A) and
zeaxanthin (Z) (Demmig-Adams and Adams 1992,
Horton et al. 1996, Choudhury and Behera 2001). The
extent of this conversion is usually expressed as the de-
epoxidation state (DEPS) of the xanthophyll cycle pig-
ments. Numerous studies have shown a close positive
correlation between the DEPS and the non-radiative dissi-
pation of absorbed photon energy reflected in the non-
photochemical quenching (NPQ) of Chl fluorescence
(e.g. Demmig-Adams 1990, Demmig-Adams and Adams
1996).

Senescence-induced changes in the xanthophyll cycle
have not been yet fully elucidated. Biswal (1995) has im-
plied a senescence-induced inhibition of the xanthophyll
cycle. But recent studies have shown an increase in the
DEPS during senescence under field conditions, especial-
ly in the leaves exposed to high irradiance (HI) (Murchie
et al. 1999, Garcia-Plazaola and Becerill 2001, Lu et al.
2001a,b, 2003, Yang et al. 2001, Jiao et al. 2003). Their
results indicate that the xanthophyll cycle plays a role in
photoprotection of the photosynthetic apparatus in se-
nescing leaves through the thermal dissipation of excess

Materials and methods

Plants and senescence conditions: Plants of spring bar-
ley (Hordeum vulgare L.) were grown in a growth cham-
ber at 23 °C on an artificial medium composed of perlite
and Knop’s solution. The irradiation regime was 12 h
dark/12 h light (fluorescent radiation) with a PAR irra-
diance of 90 pmol m™ s”'. The mature primary leaves of
the plants in the growth phase of two leaves (the growth
phase 1.2 according to Feekes 1941) were used for mea-
surements. Leaf segments were cut off from the primary
leaf blades (1.5 cm from the tip of the leaf, length of
5.0 cm) and placed into dishes with distilled water during
the first two hours of the dark period. The leaf segments
floated on the water surface. The segments were kept
under dark or light (continuous PAR, irradiance 90 pmol
m? s at an air temperature of 23 °C.

Pigment analyses: Leaf segments were frozen in liquid
nitrogen. Pigments were extracted from the segments
with 80 % acetone and a small amount of MgCO;. The
extract was centrifuged (3 600xg, 5 min) and the filtered
supernatant was used for spectrophotometric (Specord
M40, Carl Zeiss, Jena, Germany) estimation of Chl and
total carotenoid (Car) contents (Lichtenthaler 1987), and
for HPLC determination of relative changes in individual
pigments of the xanthophyll cycle. The isocratic reverse-
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photon energy (Garcia-Plazaola and Becerill 2001, Lu
et al. 2001a,b). All mentioned studies investigated only
the “actual” DEPS in the leaves exposed to particular ir-
radiance. Changes in the DEPS during HI-exposure of
dark-adapted leaves reflecting the activation of the xan-
thophyll cycle have not been yet studied during senes-
cence.

Further, the leaves attached to plants were used in all
the mentioned studies. The connection of the leaves with
the plant enables the source-sink relations, the transport
of nutrients from the senescing leaves to the rest of plant,
and the signal regulation of some processes in these
leaves (Matile 2001). In the present study we used barley
leaves detached from plants, i.e. a system without a possi-
bility of translocation of degradation products and with-
out any influence of the rest of plant. The natural light/
dark circadian changes were eliminated by keeping the
barley leaf segments in darkness or under continuous irra-
diation (90 umol m™ s™) for 6 d at constant temperature
and water supply. We have followed senescence-induced
changes in the actual DEPS as well as changes in the
DEPS during HI-exposure (500 pmol m™ s, 14 min) of
dark-adapted leaf samples in order to determine changes
in the activity of the xanthophyll cycle during senescence.
The kinetics of the HI-induced V de-epoxidation has been
compared with the induction kinetics of non-photo-
chemical Chl fluorescence quenching (NPQ) and 1 — qp
parameter.

phase HPLC was performed according to a slightly mo-
dified procedure of Féarber and Jahns (1998). The HPLC
system consisted of a ProStar 230 Delivery Module,
ProStar 320 UV-VIS detector (Varian Analytical
Instruments, Walnut Creek, USA), and a reverse phase
column (5 pm particle size, 250/4 RPI18, Lichrocart,
Germany). The pigments were eluted isocratically
for 13min with acetonitrile : methanol : 0.1 M Tris
(87 :10:3, v/v) followed by a 12-min isocratic elution
with methanol : ethyl acetate (34 : 16, v/v) at a flow rate
of 33.3 mm’ s™'. Absorbance was measured at 440 nm.
The de-epoxidation state of the xanthophyll cycle pig-
ments (DEPS) was calculated as DEPS = (Z + A)/(V + A
+ Z) (Gilmore and Bjoérkman 1994), where Zis zea-
xanthin, A is antheraxanthin, and V is violaxanthin. The
actual DEPS, residual DEPS after 1 h of dark-adaptation
(for control leaves and light-senescing segments), and
“HI-induced DEPS” in three time points (4, 9, and
14 min) of a Hl-exposure (“white light”, 500 pmol m™
s™) were evaluated. A difference between the HI-induced
DEPS and residual DEPS was estimated and presented as
ADEPS.

Chl fluorescence was measured at room temperature
(23 °C) with a modulation fluorometer PAM 2000 (Walz,
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Effeltrich, Germany). The Fy/Fy= (Fy— Fo)/Fy was de-
termined from the minimal Chl fluorescence intensity
(F¢) and maximal fluorescence intensity (Fy) measured
on the adaxial side of the barley leaves or leaf segments.
The control (attached) leaves were measured during the
fifth and sixth hours of the dark period, the light-senes-
cing segments were measured after 1h of dark-adap-
tation. Fy was obtained upon excitation of the leaf seg-
ment with a weak measuring beam of 0.2 pmol m™ s, Fyy
was measured by means of a 0.8-ssaturating pulse
(=6 000 pmol m™ s™).

After the Fy/Fy; measurement, the induction kinetics
of Chl fluorescence parameters was recorded during
14 min of HI-exposition of the leaf samples (“white
light”, 500 pmol m™ s™"). During fluorescence induction
the saturating pulses (0.8 s, 6 000 pmol m? s™) were ap-
plied in order to determine Fy;” (= maximal Chl fluores-
cence intensity during the actinic irradiation). The first
two pulses were applied 2 and 22 s after switching on the
HI, following 9 pulses in 40 s intervals, and the last

Results

The content of Chls and total Cars did not change signi-
ficantly in barley leaf segments kept under continuous ir-
radiation (Table 1). The ratios of contents of Chl/Car and
Chl/xanthophyll cycle pigments (V+A+Z) slightly de-
creased after the detachment (Table 1).

In the dark-senescing segments of barley leaves a gra-
dual decrease in Chl and Car contents was found together
with a decrease in Chl/Car, indicating a relatively more
rapid decrease in the Chl content in comparison with Cars
(Table 1). The Chl/(V + A + Z) ratio decreased, too. On
the 6" d after detachment it was reduced by about 50 %
compared with the control leaves and segments senescing

6 pulses in 80s intervals. After each pulse, HI was
switched off and far-red radiation was applied for 3 s in
order to measure F,” (= minimal Chl fluorescence inten-
sity during the actinic irradiation). The induction kinetics
was measured each day within 6 d after detachment (ex-
cept the first day after detachment when no significant
changes in the studied parameters were expected). For
better readability only the kinetics measured in the con-
trol leaves and 2, 4, and 6 d after detachment is presented
(Fig. 4).

The excitation pressure on PS2 was calculated from a
coefficient of photochemical fluorescence quenching qp
(van Kooten and Snell 1990) as 1 — qp = 1 — (Fm' — F/
(Fm —Fy'), where F, was the fluorescence intensity at
time t. Non-photochemical fluorescence quenching (NPQ)
was calculated as Fy/Fy"—1 according to Bilger and
Bjorkman (1990). A general statistical description (me-
dians and quartiles) was used in the case of Chl fluores-
cence parameters (Lazar and Naus 1998).

under continuous irradiation. The pronounced decrease in
the relative amount of Chls was caused by the decrease in
their content (Table 1) rather than by an increase in the
xanthophyll cycle pigment pool.

Changes in the Fy/Fy; ratio in the light-senescing leaf
segments were almost negligible; the values above 0.80
within 6 d after detachment indicated a nearly unchanged
maximal efficiency of PS2 photochemistry (Fig. 1). In the
dark-senescing segments, Fy/Fy decreased to about 0.65.

The actual de-epoxidation state of the xanthophyll
cycle pigments (DEPS, estimated as a ratio (A + Z)/(A +
Z + V) in the control (attached) leaves was about 0.06

Table 1. Changes in contents of chlorophyll (Chl) and carotenoids (Car) and ratios Chl/Car, Chl a/b, and Chl/xanthophyll cycle pool
pigments (V+A+Z) (V, violaxanthin; A, antheraxanthin; Z, zeaxanthin) in senescing segments of barley leaves. The last ratio was eva-
luated from HPLC results (n = 3), the other parameters from spectrophotometric measurements (n = 5). The segments were kept under
continuous irradiation (90 pumol m? s™) or in the dark. Means and SD are shown. Statistically significant differences from control
values are indicated by the letter a, and between the segments kept under light and dark conditions for corresponding day after de-

tachment by the letter b. *p<0.05, ~p<0.01, ™"p<0.001.

Time after Chl a+b Car x+c Chl/Car Chl a/b Chl/(V+A+Z)
detachment [d] [g m?] g m?]
Control 0 2343 44+0.5 53+0.1 3.6+02 7.9+0.3
Light 2 20+ 4 44+0.8 47+02a™ 3.5+0.2 6.7+0.6a"
3 24+3 46+0.7 52402 31+02a" 7.0+02a™
4 27+4 54+0.8 49+0.1a" 33+0.1a" 69+02a™
5 20+5 42+1.0 47+02a™ 32+0.1a" 74406
6 18+6 43+13 42+02a"™ 3.540.1 72+02a"
Dark 2 18+5 40+1.1 45+02a™ 3.5+0.1 64+04a™""
3 14+3a™°,b™ 35+06a",b" 40+03a"",b™ 33+0.1a" 54+06a",b"
4 10+£3a™,b™ 33+03a”",b™ 29+06a"",b™ 32+01a" 58+12a"
5 7+2a™ 0™ 2740427 6™ 2610727, 3.1+01a" 55+02a™b"
6 6+2a"" b 26+04a™,b™ 22+072",b77 32403 40+08a"",b"
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Fig. 1. The maximal efficiency of photosystem 2 photochemis-
try (Fy/Fyp) in the control (attached) barley leaves (<) and in the
leaf segments senescing in darkness (m) and under continuous
light (o). Medians and quartiles are shown; n = 10-12.
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Fig. 2. The actual (open symbols) and residual (solid symbols)
de-epoxidation state of the xanthophyll cycle pigments (estima-
ted as the amount of A and Z related to amounts of A, Z, and V)
in the control (attached) barley leaves (diamonds) and in the
light senescing (circles) and dark senescing (triangles) barley
leaf segments. The residual DEPS was determined after 1 h of
dark adaptation. Means and SD, n = 3.

at the end of the light period (Fig. 2). The residual DEPS
(i.e. the DEPS after 1 h of dark-adaptation) was about
0.03 as a part of Z was converted back to V. There was a
pronounced increase in the actual DEPS in the light-se-
nescing segments from the 3" day after detachment. The
residual DEPS slightly decreased on the 2" d after de-
tachment in comparison with the control leaves, and then
a slight increase was found. The actual DEPS in the dark-
senescing segments was zero as neither Z nor A were
detectable from the 2™ d after detachment (Fig. 2).

The HI-exposure of the control leaves and senescing
segments was aimed to reveal the rate and extent of
conversion of V into A and Z during HI treatment. This
exposure caused an increase in the DEPS designated as
ADEPS (ADEPS = “HI-induced DEPS” — residual DEPS,
Fig. 3). In the control leaves the ADEPS reached a relati-
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vely low plateau after 4 min of HI. In the light-senescing
segments the Hl-exposure caused a more pronounced in-
crease in the ADEPS, especially after 9 and 14 min. The
de-epoxidation of V was strongly delayed in the dark-se-
nescing segments as an increase in the ADEPS was gra-
dually slowed down. However, the ADEPS after 14 min
of the Hl-exposure was even slightly higher on the 2™
and 4™ d or non-significantly lower on the 6" d after de-
tachment in comparison with the control leaves (Fig. 3).
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Fig. 3. The high-irradiance (HI) induced de-epoxidation state of
the xanthophyll cycle pigments (estimated as ADEPS = actual
DEPS — residual DEPS) during the HI (500 pmol m™ s™') expo-
sure of the control (attached) barley leaves and leaf segments
senescing in darkness (dark) and under continuous light (light)
for 2, 4, and 6 d after detachment. Means and SD, n = 3.

The induction kinetics of Chl fluorescence parameters
(NPQ and 1 — qp) was measured during 14 min of the HI-
exposure in the same leaf samples for which the ADEPS
was followed. In the case of control leaves and light-se-
nescing segments, NPQ should be also understood as an
increment (i.e. ANPQ) as in the case of the ADEPS,
because the Fy; value estimated after 1 h of dark-adapta-
tion of these samples might have been lowered by the re-
sidual DEPS (Fig. 2). In the control leaves, the induction
kinetics of NPQ was characterized by a gradual increase
to a steady-state value (of about 2.3) (Fig. 44). The in-
crease in NPQ in the light-senescing segments during the
first 4 min of HI was almost the same as in the control
leaves (except a slight acceleration observed in the seg-
ments on the 2" d after detachment). However, there was
a suppression of the subsequent NPQ increase and
steady-state values. The steady-state value of NPQ de-
creased on the 2™ d after detachment to about 1.3 and re-
mained near this value (Fig. 44). Interesting changes
were found in the NPQ induction kinetics of the dark-se-
nescing segments. The increase of NPQ induced by HI
became bi-phasic: after an initial increase within the first
4 min there was a plateau and subsequent more rapid in-
crease even without reaching saturation. The NPQ in-
crease was gradually suppressed in the dark-senescing
segments and the NPQ value after 14 min of HI de-
creased significantly on the 6™ d after detachment
(Fig. 44).

The senescence-induced changes in the 1 — qp
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induction kinetics were analogous to those in the NPQ
kinetics. The decrease in value of 1 — qp during the HI-ex-
posure was accelerated in the segments senescing under

Discussion

The continuous exposure of the senescing barley leaf seg-
ments to the cultivation irradiance (90 pmol m™s™) mar-
kedly retarded the Chl degradation in comparison with
the situation in darkness (Table 1) and maintained the
maximal efficiency of PS2 photochemistry (Fy/Fy;
Fig. 1). Induction kinetics of NPQ and 1 —qp was even
accelerated compared to the control leaves (Fig. 4). How-
ever, in the control leaves the kinetics was measured
within the fifth and sixth hours of the dark period so that
the activation of the photosynthetic apparatus could be
slowed down in comparison with the light-senescing seg-
ments that were dark-adapted for 1 h.

Moderate irradiance retards the senescence-induced
symptoms such as a decrease in contents of photosynthe-
tic pigments (e.g. Thimann et al. 1977, Kar et al. 1993,
Meir and Philosoph-Hadas 1995) and proteins (e.g. Klerk
et al. 1993, Chang and Kao 1998), in PS2 photochemistry
(e.g. Kar et al. 1993, Spundova et al. 2003), and in some
other functions. However, there is an increasing risk of
photo-oxidative damage to the photosynthetic apparatus
when senescing leaves are irradiated (Munné-Bosch and
Allegre 2002). A supply of NADP' as a final acceptor of
electrons in the photosynthetic transport chain decreases
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Fig. 4. Induction kinetics of NPQ (non-photochemical quen-
ching of chlorophyll fluorescence) (4) and 1—qp (B) in the
control (attached) leaves of barley and leaf segments senescing
in darkness (dark) and under continuous irradiation (light) for 2,
4, and 6 d after detachment during their high-irradiance expo-
sure (500 pmol m™ s'). Medians and quartiles are shown; n = 6.

continuous irradiation in comparison with control leaves
(Fig. 4B). In the dark-senescing segments this decrease
was gradually inhibited within 6 d after detachment.

due to an inhibition of stromal reactions so that prob-
ability of the electron flow to molecular oxygen, accumu-
lation of the reactive oxygen species, and photodamage to
the chloroplast components increase. One of the protect-
ive mechanisms against photodamage is the pH-depend-
ent thermal dissipation of excited states occurring in the
PS2 antenna pigment bed. This process involves the de-
epoxidation of V through A to Z which is triggered by the
acidification of thylakoid lumen (Demmig-Adams and
Adams 1992, Horton et al. 1996). A higher de-epoxid-
ation has been recently found in the leaves of the plants
senescing under natural conditions, which indicated that
the xanthophyll cycle played a role in the photoprotection
of the photosynthetic apparatus in senescing leaves. The
increase in the actual DEPS during natural senescence
was observed in the attached leaves of field-grown wheat
(Lu et al. 2001a,b, 2003) and rice (Murchie et al. 1999,
Yang et al. 2001), and in leaves of beech (Garcia-
Plazaola and Becerill 2001). The senescence-induced in-
crease in the actual DEPS was more pronounced in the
leaves exposed to higher irradiance (at midday in compa-
rison with the morning: Murchie et al. 1999, Lu
et al. 2001a,b, 2003, Yang et al. 2001, Jiao et al. 2003, or
in the sun leaves compared to the shade ones: Garcia-
Plazaola and Becerill 2001). These results indicate that a
long lasting exposition of senescing leaves to HI leads to
a higher DEPS.

In our case, the actual DEPS was also increased in the
light-senescing leaf segments (Fig. 2) even if they were
exposed to a relatively low irradiance (90 pmol m? s™).
However, a long-time photon dose was doubled compa-
red to that before the detachment, because the plants were
growing under a periodic irradiation (12 h light/12 h
dark) whereas the segments were kept under continuous
irradiation. Afitlhile et al. (1993) have reported a decrea-
se in the actual DEPS in detached barley leaves senescing
under continuous irradiation. However, they used lower
irradiance (46 pmol m™ s™) and the photon dose was not
increased after detachment as in our case.
The increased actual DEPS might contribute to the
maintenance of Chl content and PS2 photochemistry in
the light-senescing segments (Fig. 2) because the protec-
tive effects of Z and A in thylakoid membranes include a
regulation of the thylakoid membrane fluidity (Gruszecki
and Strzalka 1991, Strzalka and Gruszecki 1997, Tardy
and Havaux 1997) and inhibition of membrane lipid per-
oxidation (Havaux et al. 2000). The slightly increased
residual DEPS in the light-senescing segments (Fig. 2)
indicated the slowed-down epoxidation of Z and A back
to V.

In HI-treated (500 pmol m? s™) dark-adapted leaf
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samples, the xanthophyll cycle was activated, and the le-
vel of de-epoxidation (ADEPS) increased. The rate and
extent of conversion of V into A and Z was stimulated in
the light-senescing segments, which was indicated by the
more rapid increase in the ADEPS and by the higher
ADEPS values after 14 min of Hl-exposure in compari-
son with the control leaves (Fig. 3). An increase in the
DEPS should be accompanied by a corresponding in-
crease in NPQ (Demmig-Adams 1990, Demmig-Adams
and Adams 1996). Such changes were found during se-
nescence in the field (Murchie et al. 1999, Lu et al.
2001a,b, 2003, Jiao et al. 2003). In our case such cor-
relation might be valid in the initial phases of the induc-
tion kinetics (compare Figs. 3 and 44). However, the
steady-state values of NPQ in the light-senescing seg-
ments were lower (despite of the higher ADEPS) in com-
parison with the control leaves. Similar results were re-
ported by Kurasova et al. (2002) for barley plants accli-
mated to HI: the lowest NPQ was observed in the leaves
with the highest DEPS. Kurasova et al. (2002) suggested
a specific Hl-acclimation of barley without a pronounced
increase in non-radiative dissipation (see also Cajanek
et al. 1999). In our case, the decrease was observed also
in steady-state values of SV, in the light-senescing seg-
ments (data not shown). SV, is the quenching of minimal
Chl fluorescence and it might be related to the part of
non-radiative dissipation localized within light-harvesting
complexes (Pospisil 1997, Spunda et al. 1997). Therefore
this quenching should better correspond to the DEPS.
However it was not our case. A reason for the lower non-
radiative dissipation in the light-senescing segments with
the higher DEPS remains misty.

During senescence in darkness, similar changes in the
induction kinetics of both ADEPS and NPQ were ob-
served (Figs. 3 and 44). The increase in the ADEPS and
NPQ was gradually slowed down and the steady state
could not be reached within the 14 min of HI-exposure.
The gradual retardation of V de-epoxidation and slowing
down of the NPQ increase might be connected with a par-
tial inhibition of lumen acidification and impairment of
the electron transport processes in thylakoid membranes,
which was indicated by the gradual inhibition of 1 — qp
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kinetics (Fig. 4B). The slowing down of the 1 — qp de-
crease during the Hl-exposure can be interpreted as the
decrease in the electron withdrawing from PS2 reaction
centres (Bjorkman and Demmig-Adams 1995). The inhi-
bition of the linear electron transport was reported for the
senescing leaves (Grover and Mohanty 1993 and referen-
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Other explanation of the delayed conversion of V into
A and Z might be connected with changes in the lipid
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