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Photosynthetic organisms and excess of metals
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Abstract

When cells get metals in small excess, mechanisms of avoidance occur, such as exclusion, sequestration, or compart-
mentation. When the excess reaches sub-lethal concentrations, the oxidative stress, that toxic metals trigger, leads to per-
sistent active oxygen species. Biomolecules are then destroyed and metabolism is highly disturbed. At the chloroplast
level, changes in pigment content and lipid peroxidation are observed. The disorganized thylakoids impair the photosyn-
thetic efficiency. The Calvin cycle is also less efficient and the photosynthetic organism grows slowly. When an essen-
tial metal is given together with a harmful one, the damages are less severe than with the toxic element alone. Combined

metals and phytochelatins may act against metal toxicity.
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Introduction

Several metals are essentials for plant development and
daily life. Many bio-molecules and reactions in plants re-
quire essential elements, e.g. Fe for electron transporters
and chlorophyll (Chl) biosynthesis, Mg for functional
Chl, Mn for photosystem 2 (PS2) activity, Cu for plasto-
cyanin, or Zn for superoxide dismutase. Usually, most of
the vital elements are present in a concentration range,
which is compatible with life. Fe is an atypical element
the content of which is far below those required for mi-
crobial or plant growth, because of the low solubility of
Fe-containing chemical species (Schmidt 1999, Connolly
and Guerinot 2002). When metals are present in excess,
they become toxic. Non essential metals (e.g. Al, Ag, Cd,
Cr, Hg, Pb) are also not favourable. Excess of metals
reaches plants as a result of environmental pollution be-
cause of anthropic activities such as mining, smelting,
manufacturing, agricultural and waste disposal techno-
logies (Foy et al. 1978). Some authors give the relative
toxicity for different elements: for instance, for algae, the
decreasing toxicity is the following: Hg > Cu > Cd > Ag
> Pb > Zn. In some cases, the relative effects of two ele-
ments are reversed (e.g. Backor et al. 1998, Abd-El-
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Monem et al. 1998). Moreover, some elements have
variable toxicity according to the chemical species they
belong to; for instance, the more reduced forms of As, Cr,
or Hg are less toxic (Ochiai 1987).

Metals can penetrate into unicellular organisms
through the whole surface of the cell. With macroscopic
pluricellular organisms, the situation is different because
parts of the organisms are especially dedicated to food in-
come or mineral assimilation. For instance in higher
plants and lichens, the main contact surface of the orga-
nisms is constituted by the root and rhizine systems, re-
spectively (Goyald and Seaward 1981, 1982, Wishiewski
and Dickinson 2003). Once absorbed, the metal can be
either stored there or exported to other organs. For instan-
ce, the xylem is important for metal distribution through
the whole plant (Blamey et al. 1986, Salt et al. 1995).

This review presents the main molecular targets of to-
xic metals in plant cells and develops their impact on
chloroplast components and photosynthetic activities due
to imbalanced metabolism and active oxygen species.
The beneficial effects of some metal combinations and
phytochelatins are finally shown.
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Abbreviations: AOS — active oxygen species; AP — ascorbate peroxidase; Chl — chlorophyll; GR — glutathione reductase; GSH - re-
duced glutathione; GSSG - oxidized glutathione; HM — heavy metal(s) (the element symbol may include different chemical species);
PC — phytochelatin; Pchlide — protochlorophyllide; PS — photosystem; RuBPCO - ribulose-1,5-bisphosphate carboxylase/oxygenase;
SOD - superoxide dismutase.
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Metal chelation outside the cells

The polysaccharides secreted by some species allow them
to adsorb toxic metals of the medium and prevent them to
enter inside the cells. In lower photosynthetic organisms,
this excretion falls in stress response mechanisms as it is
amplified by the metal pollution. This has been shown
with cyanobacteria (Microcystis aeruginosa: Parker et al.
2000; Spirulina sp.: Hernandez and Olguin 2002), micro-
algae (Chlamydomonas reinhardtii: Macfie and Well-
bourn 2000, Pistocchi et al. 2000), or seaweeds (Sargas-
sum fluitans: Fourest and Volesky 1997).

For higher plants, the phenomenon is less clear. A va-
riety of organic substances is released either actively or
passively by plant roots, the main components being re-
ducing sugars, amino acids, phenolics, and organic acids
(Schmidt 1999). Root exudates affect the availability of
micronutrients directly by acidification of the rhizo-
sphere, chelation, and/or reduction of some elements. In
Al-tolerant plants, Al stimulates secretion of phosphate,
organic acids, and mucilage from root apices that prevent
the metal absorption (Archambault et al. 1996, Pellet
et al. 1996, Jorge and Arruda 1997, Ma et al. 2001,
Kochian et al. 2002).

Metal income inside the cells and membrane
crossing

Most of metals enter a cell as cationic elements (e.g.
Zn*"), whereas others cross the plasma membrane as an-
ionic group (e.g. AsO,*) or included in small organic
compounds (e.g. CH3;Hg"). These species cross membra-
nes by simple diffusion, but also via transporters. Diffe-
rent families have been reviewed by Williams et al.
(2000) and Mendoza-Cozalt and Moreno-Sanchez (2005):
the CPx-type ATPases which pump essential and non-es-
sential metals across the plasma membrane, the cation/H*
antiporters, the Nramp family (natural resistance asso-
ciated macrophage proteins) implicated in the transport of
divalent metal ions, the CDF family (cation diffusion fa-
cilitors) involved in Zn**, Co?*, Mn®*, and Cd** transport,
and the ZIP family (Fe**, Mn*, Cd*, and Zn®*-trans-
porters). These transporters are partly found in organelle
membranes (vacuole: Dietz et al. 1998, chloroplast en-
velope: Ferro et al. 2003, Mendoza-Cézalt and Moreno-
Séanchez 2005).

Excessive HM contents induce a sharp increase in
plasmalemma permeability and hence ionic imbalance,
loss of turgor, and subsequent breakdown of cell metabo-
lism (Cu®*: Sicko-Goad 1982). When toxic metals and
beneficial elements enter the cell together, the beneficial
part may be too weak because of competition (Ernst et al.
2000, Parker et al. 2000, Shukla et al. 2003, Vaillant
et al. 2004, Mendoza-C6zalt and Moreno-Sanchez 2005).
It happens actually for Fe (Wallace et al. 1992, Sarvari
et al. 1999). Patsikka et al. (2002) indicated, for example,
that when Cu is given in excess in a growth medium, it
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causes Fe deficiency because both metals have partially
common pathways. However, in some cases the
beneficial element is an antidote against the toxic element
when it is given in excess (see the last section).

Metal toxicity inside the cells

When the income of elements into the cell overrates it
needs, the residual metals may interfere with the usual
cellular metabolism and become toxic. To overcome the
negative effects of metals, cells have developed several
avoidance mechanisms such as metal exclusion or
complexation, translocation, and cellular compartmen-
tation (reviewed in Benemann 1991, Vangronsveld and
Clijsters 1994, Sanita di Toppi and Gabbrielli 1999,
Bertrand et al. 2001a). At high concentrations, avoidance
is insufficient; free radicals are then produced, imposing
oxidative stress (De Vos and Schat 1991, Luna et al.
1994, Stohs and Bagchi 1995, Olmos et al. 2003).
Disturbances have been detected everywhere in the cell.
Literature has reported many interactions of metals with
bio-molecules: by association to organic acids or
phosphate anions, by blocking essential groups (depletion
of sulfhydryls), and displacing essential metal ions
(Ochiai 1987, Stohs and Bagchi 1995, Rauser 1999). The
consequences are lipid peroxidation, imbalance in ionic
transport and homeostasis, high ATP content, inhibition
of enzymes (antioxidant enzymes, ATPases), and DNA
damage (Luo et al. 1996, Demidchik et al. 1997, Navari-
1zzo and Quartacci 2001, Paivoke 2003).

The degree of toxicity is difficult to predict because
the excess of several metals can be treated differently
inside the cell according to the biological species (Rauser
1999, Kochian et al. 2002, Souza and Rauser 2003,
Vaillant et al. 2004) or the genotypes of the same species
(Wu et al. 2003). Nevertheless, similar defence-related
secondary metabolites have been detected after various
stresses (Mithofer et al. 2004).

Metal disturbance for
photosynthetic activities

chloroplasts and

Chloroplast density: Leaf chlorosis in plants grown on
metal-polluted soil can be due to a low chloroplast
density caused by a reduction in the number of
chloroplasts per cell and a change in cell size, suggesting
that the excess of metal interferes with chloroplast
replication and cell division (Cd: Baryla et al. 2001).

Accumulation of heavy metals in chloroplasts: Ferro
et al. (2003) identified more than 100 proteins in the
chloroplast envelope membranes. Among them is a metal
transporter, a potential Cd/Zn transporting ATPase
(AHM1), indicating a possibility for these metals to enter
and accumulate. Despite of severe destructions that toxic
metals provoke in chloroplasts, they do not accumulate in
these organelles (Cu: Quartacci et al. 2000, Péatsikka



et al. 2002; Cd: Baryla et al. 2001, Carrier et al. 2003);
they are rather found in abundance in the apoplast and the
vacuole. This conclusion, valuable at least for higher
plants, contrasts with the results of Nagel et al. (1996)
and Mendoza-C6zalt and Moreno-Sanchez (2005) who
found 50-60 % Cd in the chloroplast of a cell-wall de-
ficient Chlamydomonas reinhardtii and the plant-like va-
cuole deficient Euglena gracilis, respectively. Both re-
sults indicate that even if chloroplasts have the capability
to accumulate HMs, they do not represent the target orga-
nelle for these when the plant cell has a cell-wall and a
vacuole. It also means that toxic metals are actively di-
rected to the vacuole (Sanita di Toppi and Gabbrielli
1999, Navari-lzzo and Quartacci 2001).

Molecular components and enzymatic activities

Pigments: Chorosis indicates a low Chl density (Conway
1978, Chettri et al. 1998, Aravind and Prasad 2004) that
can be the result of a slowed down accumulation of the
green pigment in case of metal pollution. The origin can
be a Fe deficiency (Abadia et al. 1989, Fodor et al. 1995)
or an inhibition by the toxic metal of a key step (Baryla
et al. 2001, Schoefs and Franck 2003, Mysliwa-Kurdziel
and Strzatka 2005, Schoefs and Bertrand 2005). For in-
stance, Cd inhibits Chl biosynthesis through &-amino-
levulinic acid dehydratase (Mysliwa-Kurdziel and
Strzatka 2002), photoactive protochlorophyllide (Pchlide)
and NADPH:Pchlide oxidoreductase (Mysliwa-Kurdziel
et al. 2003, Schoefs and Bertrand 2005) by its interferen-
ce with the sulfhydryl site (Prasad and Strzatka 1999).
Photoactive Pchlide is also degraded by Cd, whereas
Cr(VI1) oxidizes NADPH (Mysliwa-Kurdziel and Strzatka
2005).

Cu inhibits pigment accumulation and retards Chl in-
tegration into the photosystems (Caspi et al. 1999). Cu
treatment also results in a larger light-harvesting antenna.
Moreover, Patsikka et al. (2002) demonstrated that Cu®*
predisposes leaves to photoinhibition (high photosensiti-
vity of PS2) through reduction of Chl concentration.
However, the loss of Chl and sensitivity to photoinhibi-
tion could be overcome by adding excess Fe together
with excess Cu to the growth medium, as Cu out-com-
petes Fe in Fe uptake.

Cd, Cu, Hg, Ni, Pb, or Zn can replace Mg within Chl
(e.g. Kiipper et al. 1996, Souza and Rauser 2003,
Solymosi et al. 2004), leading, consequently, to a break-
down in photosynthesis. In case of metal pollution, the
change in the ratio of Chl a/b suggests that the metal dif-
ferentially affects the light-harvesting complex (LHC2 of
PS2), where Chl b is located, rather than the Chl a reac-
tion centres (Clijsters and Van Assche 1985, Wisniewski
and Dickinson 2003, Aravind and Prasad 2004).

Carotenoids are also sensitive to metal oxidative
stress (Cu: Backor and Vaczi 2001; Co: Tewari et al.
2002, As: Mascher et al. 2002; Cd: Aravind and Prasad
2004). B-carotene is the most resistant (Wishiewski and
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Dickinson 2003). However other authors, after various
stress experiments, observed an increased amount of ca-
rotenoids (Kobayashi et al. 1997, Malaga et al. 1997,
Mallick and Rai 1999, Mallick 2004). The carotenoid ac-
cumulation is often regarded as one of the mechanisms to
counteract stress in organisms (Mallick and Mohn 2000).
The xanthophyll cycle—a mechanism that protects the
photosynthetic apparatus—shows a clear decline in metal
stress studies (Bertrand et al. 2001b, Wisniewski and
Dickinson 2003). Fig. 1 indicates the possible inhibition
of the epoxidase by Cd.

Beside photosynthetic pigments which appear especi-
ally sensitive to toxic metals, anthocyanins could play a
role in the sequestration of metals, as shown at least for
Mo in the vacuole of Brassica species (Hale et al. 2001).

Lipids: If metal-resistant strains show low hydrogen per-
oxide and lipid peroxidation contents under pollution,
large amounts of fatty acid hydroperoxides can be formed
within the chloroplast envelope of metal-sensitive orga-
nisms. These strong oxidizing molecules—when not too
much abundant—can be metabolized in the stroma
through the ascorbate-glutathione cycle (Navari-1zzo and
Quartacci 2001, Mullineaux and Karpinski 2002), while
the lipophilic a-tocopherol and carotenoids fulfil anti-
oxidant action in thylakoid membranes. When harmful
chemical species are persistent, they succeed in modify-
ing the composition of thylakoid membranes (Fig. 1;
Mohanty and Mohanty 1988, Wu et al. 2003) and the
electron transport; e.g. Cd, affects the lipid structure
around PS2, and especially the light harvesting Chl a/b
protein complex (Krupa et al. 1987, Prasad 1995).

Proteins and enzymatic activities: Non-redox metals
may oxidize sulfhydryl groups of proteins or peptides.
This change lowers in the same proportions the pool of
reducing agents such as GSH (Fig. 1, a), and it may mo-
dify the spatial conformation of enzymes, preventing
optimal activity (Meharg 1994, Demidchik et al. 1997,
Romero-Puertas et al. 2002). Concerning the polypeptide
electrophoretic patterns of the thylakoid membranes, no
striking difference could be observed between a Cd**-to-
lerant mutant and its Cd**-sensitive parent strain (Voigt
and Nagel 2002).

Ferro et al. (2003) identified in Arabidopsis chloro-
plast envelope proteins belonging to the defence system
against AQS: superoxide dismutase (SOD), ascorbate
peroxidase (AP), phospholipid hydroperoxide glutathione
peroxidase (PHGP), and thioredoxin M-type 1 (THM1).
Most of these enzymes are soluble and act in the vicinity
of the inner membrane. Fig. 1 illustrates the enzymatic
defence system acting against AOS inside chloroplasts.
Under severe metal pollution, not only excessive oxid-
ation occurs, but the efficiency of anti-oxidative defences
greatly reduces in non-resistant plants: Cu and Cd affect
SOD and AP (Fig. 1), guaiacol peroxidase, glutathione
reductase (GR), and catalase (Patsikka et al. 2002, Cho
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and Sohn 2004, Sobkowiak et al. 2004): at moderate pol-
lution, the enzymatic activities appear stimulated, while
they seem inhibited at higher concentrations. This inhi-
bition is weak in resistant organisms, explaining probably
the essential of their tolerance (Wu et al. 2003). Actually,

it is not known whether the AOS are quickly eliminated
thanks to enhanced expression of the genes controlling
the biosynthesis of antioxidant enzymes and/or to in-
creased activation of existing enzyme pools.

phytochelatins
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Fig. 1. Oxidative stress and defence reactions occurring in the chloroplast when excess of metal is present: (a) depletion of sulfhydryl
groups by non-redox metals on reduced glutathione (GSH) regenerated by the glutathione reductase (GR); (b) activation of the lipoxy-
genase by non-redox metals; (c) peroxidation of polyunsaturated fatty acids (PUFA) in membranous phospholipids; (d) chelation of
metals by phytochelatins either imported from cytoplasm or synthesized through the activity of a putative phytochelatin synthetase
(PCS) not found yet in chloroplasts; (e) electron transfer from the reaction centre (RC) to the acceptor (Acc) of photosystems 1 or 2;
(f) univalent oxygen reduction by PS2; (g) electron transfer through ferredoxin (Fd) and NADP* (specific to PS1); (h) Fenton and
Haber-Weiss reactions: one electron oxido-reductions performed by redox metals leading to hydroxyl radicals (OH); (i) spontaneous
and/or SOD catalysed disproportionation of superoxide (O,). Superoxide radicals generated by PS1 and PS2 are dismutated by thy-
lakoid-bound m-SOD and hydrogen peroxide formed (H,0O,) is reduced to water by the thylakoid-bound ascorbate peroxidase (AP).
Monodehydroascorbate radical (MDHA) is reduced back to ascorbate (A) by the photoreduced ferredoxin (Fd). The O,” and H,0,
escaped from thylakoid system are scavenged by a stromal s-SOD and by a glutathione-ascorbate cycle initiated by stromal AP
(Navari-1zzo and Quartacci 2001); (j) xanthophyll cycle preventing superoxide formation at high irradiance. Epoxidation is inhibited
by Cd in diatoms (Bertrand et al. 2001). —: activation by metal(s); —| : inhibition by metal(s).

and Tchakalova 1999, Patsikka et al. 2002). Generally,

Organelle ultrastructure
Cd induces distortion of the chloroplast ultrastructure in

HM ions directly affect the structure of the thylakoid
membranes through peroxidation (Fig. 1, ¢) and oxidative
stress and lead to disorganization (Ouzounidou et al.
1992, Luna et al. 1994, Gallego et al. 1996, Stoyanova
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higher plants (bush bean: Barcel6 et al. 1988, tomato:
Baszynski et al. 1980, but not oilseed rape: Carrier et al.
2003).



Photosynthetic activities

Although higher plants concentrate HMs in their roots,
some harmful elements reach chlorophyllous cells. Photo-
synthesis is very sensitive to HMs (e.g. Clijsters and van
Assche 1985, Yruela et al. 1992, Subrahmanyam and
Rathore 2000), especially in unicellular organisms (Voigt
et al. 1998, Lu et al. 2000). It can be visualized by the
lower Chl fluorescence emitted from chloroplasts
(Klpper et al. 1998). The most documented impact of
HMs on chloroplasts is certainly that induced by Cd
(Sanita di Toppi and Gabbrielli 1999). Inhibition of pho-
tosynthesis by sub-lethal Cd** concentrations has been
described for various species, from cyanobacteria to
higher plants (Malik et al. 1992, De Filippis and Ziegler
1993, Vassilev et al. 1995, Voigt et al. 1998, Baryla et al.
2001, Shukla et al. 2003).

Photosynthetic light reactions: PS2 is especially affec-
ted by HMs (Tamova and Sofrova 2002). The disorga-
nization of the chloroplast structure leads to the inacti-
vation of oxygen-evolving centres (PS2 donor side: Van
Duijvendijk-Matteoli and Desmet 1975, Voigt and Nagel
2002) and impaired electron transport (Atal et al. 1991,
Sanita di Toppi et al. 2003, Vaillant et al. 2004). To com-
pensate the PS2 deficiency, higher photo-fluence rates are
required according to Voigt and Nagel (2002). In the
meantime, the collapse of anti-oxidative defence due to
metal pollution might also sensitize PS2 to photo-
inhibition (Patsikka et al. 2002).

Other authors have also observed PS2 disturbances in
various metal-polluted photosynthetic organisms. The
substitution of Mn by Zn on the site of photolysis inhibits
oxygen emission (Ralph and Burchett 1998). Lu et al.
(2000) have found that Hg induces a significant increase
in the proportion of the Qg-non-reducing PS2 reaction
centres of the cyanobacterium Spirulina platensis. The in-
crease of Hg content led to a decrease in the maximal ef-
ficiency of PS2 photochemistry, the efficiency of exci-
tation energy capture by the open PS2 reaction centres,
and the quantum yield of PS2 electron transport. Hg also
induced a decrease in the coefficients of photochemical
and non-photochemical quenching. In Mn-treated rice-
bean, Subrahmanyam and Rathore (2000) observed a re-
duction in photochemical quenching (gs) and excitation
capture efficiency of open PS2 (F,’/F,’) with a con-
comitant increase in non-photochemical quenching (qn).
The reader is referred to the article of Rohacek and
Bartdk (1999) for detailed definition of the above
parameters.

Essentially because of PS2 disfunctioning, photophos-
phorylation rates decrease in the presence of Cd, without
evidence for a direct inhibition by the metal of the
ATPsynthase/ATPase (Teige et al. 1990, Voigt et al.
1998). However, Mg®* and Mn*" are characterized as
activators of chloroplast ATPase (Berger and Girault
2001).
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Photosynthetic dark reactions: Inhibition of carbon
metabolism due to metal pollution has been reported in
non metal-tolerant plants (Stiborova et al. 1987, Malik
et al. 1992, De Filippis and Ziegler 1993, Voigt and
Nagel 2002). CO, uptake can be reduced because of a
reduced number of stomata in Cd-polluted plants (Baryla
et al. 2001) or because of stomata closing (Sanita di
Toppi and Gabbrielli 1999, Vaillant et al. 2004). In rye-
grass, Zn treatment inhibits RUBPCO carboxylase capa-
city, whereas its unmodified oxygenase capacity protects
the chloroplast (Monnet et al. 2001). Subrahmanyam and
Rathore (2000) indicated that a reduced demand for ATP
and NADPH in the Calvin cycle causes a down-regu-
lation of PS2 photochemistry.

Weakening of metal toxicity

We reviewed the defence mechanisms that the cell can
deploy to cope with toxic metals. Most of experiments
have been performed using only one metal in excess for a
determined duration. It is thus difficult to predict the mo-
dification of the whole metabolism when more than one
metal is in excess in the environment, and when the time
of contamination is variable. However, some articles re-
late the combined action of two or more metals in excess
and the role of metal polypeptide chelators (metallo-
thioneins and phytochelatins).

Beneficial effect of combined metals

Some authors have observed the beneficial effect of an
essential metal when given with a non-essential one. For
instance, Aravind and Prasad (2004) demonstrated that
when Ceratophyllum demersum, a freshwater macro-
phyte, is treated with Cd along with Zn, this metal pro-
tects chloroplasts and associated photochemical func-
tions. Since both Cd and Zn belong to group Il of transi-
tion elements with similar electronic configuration and
valency, they have similar geochemical and environmen-
tal properties (Siedlecka 1995). Zn is an essential element
required by many key enzymes, and plays a significant
structural role as stabilizer of proteins, membrane and
DNA-binding proteins (Zn-fingers). It probably maintains
Chl synthesis through sulfhydryl group protection, a
function primarily associated with Zn (Cakmak 2000). Zn
always prefers binding to the —SH groups of the protein
moiety and protects them from thiol oxidation and disul-
fide formation (Chvapil 1973). Zn antagonizes Cd toxi-
city by counteracting the inhibition of photosynthetic pig-
ment synthesis by maintaining the contents of pigments.

Detoxification of metals by phytochelatins

PCs are cytosolic peptides synthesized from glutathione
and capable to chelate metals via thiol groups (Fig. 1, d;
Rauser 1999). Their synthesis is induced by metal excess,
Cd being the best inducer just before Zn (Souza and
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Rauser 2003). These molecules have been found in all
autotrophic plants analyzed so far (reviewed in Gekeler
et al. 1989, Cobbett 2000). They participate in homeo-
stasis (Zenk 1996, Rauser 1999), and their accumulation
has been interpreted as evidence for sequestration and de-
toxification of metals, including elements other than Cd
or Zn (e.g. As: Mascher et al. 2002). Once formed, PCs
act as shuttles for HMs to the vacuole (V6geli-Lange and
Wagner 1990, Davies 1991, Vazquez et al. 1992, Brune
et al. 1994, Zenk 1996, Sanita di Toppi and Gabbrielli
1999, Cobbett 2000). Unusually, PC have also been
found in chloroplasts of a cell-wall deficient Chlamy-
domonas reinhardtii and the plant-like vacuole deficient

Conclusion

The statements reported in this review indicate that each
defence mechanism is restricted, neither to a metal, nor to
an organelle. It appears then impossible to determine
which one is essential. However, the cell wall and the in-
tracellular reducing power seem to be of considerable im-
portance. Moreover, the conclusions characterizing metal
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