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Effect of chromium on photosystem 2
in the unicellular green alga, Chlorella pyrenoidosa
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Abstract

We investigated the effect of chromium (20-40 g m™, 872 h) on the photosystem 2 (PS2) activities of Chlorella
pyrenoidosa cells. By using chlorophyll fluorescence transients, thermoluminescence, oxygen polarography, and
Western blot analysis for D1 protein we found that inhibition of PS2 can be accounted for by the enhanced photo-
destruction of the reaction centres in the cells cultivated in the presence of Cr(VI) at 25 °C in “white light” (18 W m ).
Hence photodestruction of D1 is caused by an enhanced oxidative stress and lipid peroxidation, as indicated by the
appearance of a high-temperature thermoluminescence band.
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Introduction

Chromium is a highly toxic non-essential metal for plants
that inhibits a variety of metabolic activities, including
photosynthesis (Clijsters and van Assche 1985). Interest
in chromium originates from its widespread industrial use
and consequent pollution in diverse environmental set-
tings. Large quantities of Cr compounds are discharged in
liquid, solid, and gaseous wastes into the environment,
resulting in significant adverse biological and ecological
effects (Kabata-Pendias and Pendias 2001). Chromium
can exist in several chemical forms, displaying oxidation
numbers from O to VI. Only trivalent and hexavalent
chromium are stable enough to occur in the environment.
Chromium (IV) and (V) forms are only unstable inter-
mediates in reactions of trivalent and hexavalent
oxidation states as oxidizing and reducing agents,
respectively (Shriver et al. 1990, Ball and Nordstrom
1998). Cr(VI) is considered the most toxic form of Cr,
which usually occurs associated with oxygen as chromate
(CrO4*) or dichromate (Cr,0,>) oxy-anions. The toxic
effects of Cr in plants are primarily dependent on the
metal speciation, which determines its uptake, trans-
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location, and accumulation (Shanker et al. 2005), but
photosynthesis is clearly an important target of its toxi-
city (Krupa and Baszyniski 1995, Kipper et al. 2002,
Appenroth et al. 2003).

Chlorella pyrenoidosa is a unicellular green alga,
which is found both in fresh and marine waters. Its
physiological and biochemical properties and photosyn-
thetic apparatus are similar to higher plants, but its
growth is very fast. For these reasons, Chlorella is used
in various metabolic and stress investigations (Rachlin
and Grosso 1993, Lustigman et al. 1995). The quantum
yield of photosystem 2 (PS2) of microalgae is often used
in phytotoxicity assays (Nash et al. 2005). This is based
on the high sensitivity of PS2 toward abiotic stresses and
takes advantages on the use of rapid, non-invasive, sensi-
tive chlorophyll (Chl) fluorescence kinetic measurement.
In the present work we investigated by using Chl fluores-
cence, thermoluminescence, O,-polarography, and DI1-
Western blot analysis the toxic effect of Cr(VI) on PS2 of
Chlorella cells at different concentrations and lengths of
treatment in the dark and in the light.

Abbreviations: Chl — chlorophyll; F,, F,, — variable and maximum chlorophyll fluorescence, respectively; PpBQ — phenyl-p-benzo-

quinone; PS — photosystem; TL — thermoluminescence.
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Materials and methods

Organism and growth: Ch. pyrenoidosa (strain IAM-
C128) cells were grown in sterile tubes containing a syn-
thetic modified C-30 medium. Cultures were aerated by
filtered air bubbled with 4 % CO,, which promoted algal
suspension and stabilized the algal suspension
homogeneity and pH at 7.2. Cells were permanently
irradiated with “white fluorescent light” (18 W m™?) and
were kept at 25 °C during the growth. The cultures were
started from agar plates and were grown in liquid medium
for 3 d. When the cultures reached approximately 1x10°
cells per cm® in the mineral medium, algae were treated
with 0.1-50.0 g m™ of chromium (VI) as K,Cr,O.

Measurement of photosynthetic activities: Whole chain
electron transport rate (from H,O to CO,) was measured
by using a Clark-type oxygen electrode (Hansatech,
Kings Lynn, UK) in a temperature controlled cell at 25 °C
under saturating “white light” in the culture medium. PS2
electron transport rate was measured in the presence of
250 uM phenyl-p-benzoquinone (PpBQ). The absolute
rates of O, evolution of untreated samples in the absence
and presence of PpBQ were ca. 36 and 44 mmol(O,)
kg '(Chl) s, respectively.

Chl fluorescence induction transients were measured at
Results and discussion

As shown in Fig. 1, upon exposure of Ch. pyrenoidosa
cells to chromium, F,/F,, which is proportional to the
quantum yield of PS2 reaction centre (Bjorkman and
Demmig 1987, Genty et al. 1990), is reduced sub-
stantially, and this inhibitory effect increases with in-
creasing the concentration of Cr(VI) (Fig. 1A). Inhibition
of PS2, as reflected by O,-polarography in the presence
of PpBQ, develops gradually (Fig. 1B). These data are in
reasonable agreement with literature on the inhibitory

room temperature with a pulse-modulated PAM-101 Chl
fluorometer (H. Walz, Germany). The samples [10 g
m >(Chl)] after 5 min dark adaptation were irradiated
with saturating actinic “white light” (3 000 pmol m > s ")
provided by KL 1500 (Schott) halogen lamp for 5 s.

Thermoluminescence was measured in a home-built
apparatus as described by Wiessner and Demeter (1988).
0.4 cm® aliquots of algal sample [10 g(Chl) m™~] taken
directly from the culture vessel were excited by conti-
nuous “white light” (50 pmol m? s') at —80 °C. The
emitted thermoluminescence was measured during heat-
ing the sample in the dark at a heating rate of 20 °C per
min by a Hamamatsu end-window photomultiplier.

Western blot was performed according to Towbin et al.
(1979). The proteins were probed with mono-specific
polyclonal antibodies raised against Chlamydomonas
reinhardtii D1 protein. Blots were developed by using
goat anti-rabbit secondary antibodies conjugated with
alkaline phosphatase using standard nitroblue tetra-
zolium/5-bromo-4-chloro-3-indolyl phosphate staining
protocol. The amount of proteins was quantified by
scanning the nitrocellulose membranes with a Bio-Rad
densitometer.

effect of Cr and other heavy metal ions on the PS2
activity of thylakoid membranes (Clijsters and van
Assche 1985, Krupa and Baszynski 1995, Zeid 2001,
Kiipper et al. 2002). The lag phase and the relatively slow
onset of the inhibition, however, suggest that the inhi-
bition of PS2 activity might depend on a slow uptake of
Cr, or it might be brought about by other effects on the
photosynthetic machinery and/or on the chloroplast ultra-
structure (cf. Appenroth et al. 2003, Shanker et al. 2005).
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Fig. 1. Effect of chromium on PS2 activities in Chlorella cells at different Cr(VI) concentrations (A) and different lengths of treatment
(B), characterized by chlorophyll fluorescence (F,/F,,) and oxygen evolution in the presence of 250 uM PpBQ. The concentration
dependence (A) is shown for 8 (m), 24 (®), 48 (A), and 72 (V) h of treatment. The time course of the inhibition at 20 g m~ Cr(VI)
(B) is shown for F,/F, (0) and O,-evolution (©). B also shows that Cr(VI) treatment in the dark has virtually no effect on the
O,-evolution (A). The values were normalized to the untreated control at t =0 h.
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Fig. 2. Effect of 20 g m™ Cr(VI) on the thermoluminescence of
Chlorella cells after 0 (a), 24 (b), 48 (¢), and 72 (d) h-treatment.
Thermoluminescence was excited by continuous “white light”
of 50 pmol m™> s~ for 30 s at —80 °C in the presence (A) or
absence (B) of 10 uyM DCMU.
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Fig. 3. Immunoblot SDS PAGE and densitometric analysis of
D1 protein of Chlorella pyrenoidosa cultivated for different
time periods in the presence of 20 g¢ m™ Cr(VI). For further
details see Materials and methods.

The fact that this inhibitory effect is virtually absent in
algal cells exposed to Cr in the dark (Fig. 1B) shows that
either the uptake in algal cells is light-dependent or,
which is more likely, the inhibitory effect on PS2
originates from other deleterious effect(s) on the photo-
synthetic system.

The change in the activity of PS2 induced by
chromium exposure was also assessed by thermolumines-
cence (TL) measurements in vivo, i.e. on intact algal cells
(Fig. 2). TL is a powerful tool to examine, via thermally
induced charge re-combinations, the charge separation
and the consecutive charge stabilisation steps in PS2.
Irradiation of the algal cell suspension at —80 °C induces
the B band originating from the charge recombination
between the S, state of the water splitting complex and
the reduced secondary quinone acceptor (Qg) of PS2,
with a maximum at around 32 °C. In the presence of
DCMU, which inhibits the electron transport between Q,
and Qg, the charge recombination occurs between the S,
state and Q, . According to the lower activation energy
of that recombination reaction, the maximum of the
corresponding TL band (Q band) appears at lower
temperatures. Under our experimental conditions in
Ch. pyrenoidosa the maximum of Q band was found at
15 °C. Addition of 20 g m™ Cr(VI) into the cultivation
medium resulted in a gradual suppression of both the Q
and B bands (Fig. 2). The fact that the B band is not re-
placed by Q band upon Cr(VI) treatment proves that the
electron transfer between Q, and Qg is not hampered.
Also, the decrease of the amplitudes of Q and B bands
without shifting their maximum position indicates that
the inactivation of PS2 during Cr(VI) treatment is due to
the decreased number of the generated charges by the
reaction centres in the primary charge separation or their
subsequent stabilisation by formation of the S states and
Q4 rather than to the alteration of redox properties of the
S, state or the quinone acceptor. In other terms, these
data suggest that the non-damaged reaction centres
are not affected by chromium but Cr(VI) accelerates
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Fig. 5. Effect of chromium on photosystem 2 (PS2) and whole
chain electron transport after different periods of cultivation
times in the presence of 20 and 40 g m~ K,Cr,0,. The rates in
the Cr(VI)-treated cells are compared to the corresponding rates
in the untreated cells.

substantially the photo-destruction of the reaction centres
and/or decelerates their repair (Mizusawa et al. 2003,
Ohira et al. 2005, Zsiros et al. 2006). Indeed, as shown in
Fig. 3, cultivation of the cells in the presence of Cr(VI)
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